PHYSICAL REVIEW E, VOLUME 64, 011508
Effective temperatures in an exactly solvable model for a fragile glass
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A model glass with facilitated dynamics is considered with one type of fast progesgé and one type
of slow process ¢ type). On time scales where the fast processes are in equilibrium, the slow ones have a
dynamics that resembles that of facilitated spin models. The main features are the occurrence of a Kauzmann
transition, a Vogel-Fulcher-Tammann-Hesse behavior for the relaxation time, an Adam-Gibbs relation between
relaxation time and configurational entropy, and an aging regime. The model is such that its statics is simple
and its(Monte Carlo typg dynamics is exactly solvable. The dynamics has been studied both on the approach
to the Kauzmann transition and below it. In certain parameter regimes it is so slow that a quasiequilibrium
occurs at a time dependent effective temperature. Correlation and response functions are also computed, as
well as the out of equilibrium fluctuation-dissipation relation, showing the uniqueness of the effective tem-
perature, thus giving support to the rephrasing of the problem within the framework of out of equilibrium
thermodynamics.
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[. INTRODUCTION toward equilibrium structures on time scales longer than the
characteristic time scales of the experiments, depending on
A glass can be viewed as a liquid in which a huge slowingthe history of the systerte.g., on the phase space region in
down of the diffusive motion of the particles has destroyedVhich the initial conditions are chosen and on the cooling
its ability to flow on experimental time scales. The slowing rate), is the so called regime O.f aging dynamess].
down can be expressed through the relaxation time, i.e., the EXPerimental data for the viscosity pattern of glass form-
characteristic time needed to have one interparticle diffusiot)¥ liquids are often fitted to a Vogel-Fulcher-Tammann-
f ticle while it is rattling between its neighbor e SSXVFTH) behavior6-8], req—exg A’/(T—To)], where
process ot a par 9 : 1€Ignbor, o fitting parameteiT, depends on the material and the
partlcles, Wh'Ch form a cage arognd it. This reIaxann t'.merange of temperatures in which the fit is performed. The
is proportional to viscosity. Cooling down from the liquid g, 5hene, is usually set equal to 1, and an argument for this
phase, at some point the system falls out of equilibrium: the.pice was given by Adam and Gibfg]. A correct expla-
slow liquid degrees of freedom are no longer accessible andation of this was given by Kirkpatrick, Thirumalai, and
the relaxation time and the viscosity of the undercooled mel{y/olynes[36], and further quantitative analysis has been re-
suddenly grow by several orders of magnitude. The temperasently presented in Ref37]. Their study, however, does not
ture at which this happens is defined as the glass transitiogxclude an exponenty>1, also compatible with data,
temperaturel [1]. At T4 the heat capacity decreases in amerely affecting the width of the fitting interval. Analytic
clear way going from liquid to glassy phase, and on reheatapproaches give/=2 in three dimensiongl0,3§. Here we
ing an abrupt but different change shows(spme universal shall considery as a model parameter, which can be chosen
behavior in the cooling-heating process was pointed out byelow, equal to, or above unity, and investigate aspects of
one of ug2,3]). Moreover, discontinuities of this kind occur this standard picture.
also in the compressibility and the thermal expansivity. This Kauzmann[11] pointed out the paradox that the differ-
looks similar to a continuous phase transition, even thouglence between the liquid entropy and the crystal entfapy,
the analogy is not perfect, because of the smeared nature tife entropy of the most organized state for the systdém
the discontinuities and because the smaller specific heataively extrapolated to zero temperature would become
value occurs below the glass transition, rather than above, amegative at some point. To circumvent this unphysical result
would normally occur in mean field phase transitions. he proposed the occurrence of a thermodynamic phase tran-
The transition described above is not a true thermodysition at the temperatur@ommonly denoted bif ) where
namic phase transition, but is strictly kinetic in origin: it this entropy difference vanishes. Such a thermodynamic
takes place when the relaxation time becomes longer than theansition would be characterized by a discontinuity of the
observation time and marks the transition from ergodic tospecific heat and by the exponential divergence of the relax-
nonergodic behavior. In general the location of this transi-ation time(VFTH for fragile glasses or Arrhenius for strong
tion, the empirical glass transition temperatiig depends oneg. Connected to this last feature is the usual assumption
on the cooling rate, or more precisely on the cooling schemehat the fitting parameték, of the VFTH law coincides with
The glass transition temperature is commonly defined as thihe Kauzmann temperatuig . We note that at this phase
temperature where the viscosity equalé®L@nd the equili- transition the divergence of the relaxation time is not alge-
bration time is of the order of days. It is related to the slowesbraic in temperature, as happens in ordinary continuous
possible experiments one can realistically do. Cooling aphase transitions, but is exponential, and no susceptibility
higher rates induces a glass transition at a somewhat largeiverges at the critical point.
dynamical glass transition temperature. The residual entropy, given by the difference between the
The very slow relaxation of nonergodic systems evolvingentropy of the undercooled liquid and the entropy of the
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vibrational modes of the crystal that could in principle becorresponds to the dynamic critical temperatligeat which
formed, is usually called complexity or configurational en-the system goes to metastable states of energy higher than
tropy. According to standard knowledge, the Kauzmann tranthe minimum energy. Foif <T<Tp the dynamics ofa
sition should be characterized by a vanishing, or minimalprocesses has a huge slowing down but the temperature is
configurational entropy. This prediction is very difficult to high enough to reach equilibrium on the experimental time
test experimentally, since the relaxation time is too long. Thescales.
existence of a Kauzmann transition was nevertheless recently (3) Around T, which depends on the cooling rate, an-
supported by both analytical and numerical resfi8-14.  other transition takes place. Many other local minima of the
The configurational entropy is the entropy determined by théree energy appear and the deepest of them, corresponding to
number of states that the system at temperalw€ T<T,  metastable states, become ergodically separated on the time
can visit. scales of the experiment. Fdik <T<T, the system has a
At a given dynamic critical temperaturgy, generally very slow aging dynamics between the metastable states,
greater thafT 4, the separation of the time scales of slaw) ( proceeding by activated processes.
and fast (3) processes starts to increase more rapidly than at (4) At T=Tg a thermodynamic phase transition shows up,
higher temperature. Referring to the phase space, we can sajth exponentially diverging relaxation time. The free en-
that structures get organized at two levels: some minima oérgy barriers between deep local minima increase to infinity
the free energy are separated by very small barriers and bend the system gets stuck in one single minimum forever.
tween themgB processes take place; groups of those miniméErgodicity is broken at any time scale. In thespin model
are contained in bigger basins separated by barriers requiringis corresponds to the temperature at which the replica sym-
a much greater free energy variation to be crossed. To makeetry is broker{18]. The Kauzmann temperatufig is usu-
the system go from a configuration in one of these basins tally assumed to coincide with the fitting parametgrof the
another configuration in another basin, i.e., to haveean VFTH law. Below the Kauzmann temperature the system
process, a longer time is needed. The time scale on whicbvolves only through the configurations belonging to the er-
these processes are happening is, howeveéry and below godic component of the phase space to which the dynamics
(but aboverT ) still very short in comparison with the obser- brought it during the cooling.
vation time. In a cooling experiment the system is thus still  (5) In a cooling experiment that goes beldw , and in
in thermodynamic equilibrium. Going on with cooling, there quenching experiments to a temperature belaw the aging
is an increase in depth of the local and global minima apdynamics visits only states with a free energy that is higher
pearing in the thermodynamic potential and corresponding tthan the one in the static limit. The dynamics behaves as if
different metastable and stable states; barriers between themscurring at a higher temperature.
become higher and higher until, at the glass transition tem- The exponential divergence of time scale in glasges
peratureT,, some states become impossible to reach duringpposed to the algebraic divergence in standard continuous
the time scale we set for our system, i.e., the experimentgdhase transitionsmight induce an asymptotic decoupling of
time. The configurational entropy is the observable thathe time decades. The reasonable assumption can be made
counts the relevant states. As temperature decreases furthiat, in a glassy system that has aged a long tinadl pro-
the configurational entropy starts to decrease because thetesses with equilibration time much less thaare in equi-
are fewer and fewer states available for the system. Th#brium (the 8 processes while those evolving on time
Kauzmann temperature is reached when the system is stugkales much larger tharare still quenched, leaving the pro-
in one state and cannot move to any other, because, eversses with time scale of ordefi.e., thea processesas the
asymptotically and even for short range systems where actonly interesting ones. Indeed, this assumption has already
vated processes were present Tw<<T<T,, the free en- been tested successfully in models similar to, but even more
ergy barriers become infinite. idealized than, the one we are going to discuss in the present
The configurational entropy density, is usually con- paper. Those models showed a glassy regime with an
nected directly to the relaxation time through the Adam-Arrhenius law(rather than VFTH, like the harmonic oscil-

Gibbs relation[9]: 7¢q~exp(15). lator model[19,3] and the spherical spin modg2,3]. The
To recapitulate we have been referring to the followingasymptotic decoupling of time scales that is the input for the
different regimes for a glass former. present set of models could be the basis for a generalization

(1) ForT>Tp the system is in a disordered phase. Diffu- of equilibrium thermodynamics to systems out of equilib-
sion processes have a very short relaxation time. At veryium [3]. That approach involves systems where one extra
high temperature the free energy describing the system hasriable is needed to describe the nonequilibrium physics,
only one global equilibrium minimum and on cooling toward namely, theeffective temperaturéne of our aims will be to
the Tp temperature small local minima show up. test this picture in an exactly solvable model glass; we shall

(2) Around Tp a dynamic transition takes place. The see that there are domains where it does agpbmely,
phase is still disordered but the number of minima of the freevhen the VFTH exponenty exceeds unity and where
energy increases and some local minima become deepeét:does not apply(namely, wheny<1). In this last case
a-f3 bifurcation is qualitatively enhanced. In a simple modetwo extra variables will be needed, making compulsory the
coupling theory{15] this is the temperaturé&,,. at which a  introduction of aneffective fieldin addition to the effective
static transition is predicted with an algebraically divergingtemperature.
relaxation time. In thep-spin spin glass modgtl6,17] this In the present paper we are going to investigate an exactly
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solvable model with facilitated dynamics glass that shows all Il. MODEL
of the features that we recalled above for the much more
complicated real glasses. For other examples of models bui%
with a facilitated dynamics, see Ref23,24. The model is
introduced in Sec. Il. It is built by processes evolving on two 1 N N N N
different, well se.parated time scales, represent|ngo£rae1d HI{x}{S}]= EKE X2 — Hz xi—Jz XS — '—2 S,
[ processes taking place in real glassy materials. In Sec. IlI =1 =1 =1 =1

we introduce the dynamics that we apply to the model and 2.9

we show the dynamig behavior in the aging regime. We can here N is the size of the system anx} and {S} are
'trl?rgle?;‘ﬁgtégii%nﬁggﬁtei\é (teg geig\gl]virt:: vlf/ﬁgfg]faer\]/\r/] ;enrgﬁﬁirc%ontinuous variables, the last satisfying a spherical constraint
! >,S?=N. We will call them from now on harmonic oscilla-

results are known. Even though the physics of our model i . . e .
simple, we shall find general aspects of the results by formu%-Ors and spherical spins, respectivelyis the Hooke elastic

(EonstantH is an external field acting on the harmonic oscil-

lating them in the thermodynamic language. One of the moa . )
- : : . : . lators,J is the coupling constant betwe and{S;}, and
important points is that the configurational entropy, Wh|chL i< the external fFi)eIdgacting on the sp;ér?e}rical iais As we

we will denote byZ, is exactly computablésee Secs. Il and will see in this paper the simple local form of E€.1)

IV) as a function of the dynamic variables of the model. ; : .
From the study of the dynamic¢Secs. Il and IV it turns allows us to introduce an analytically solvable dynamics
y Y : with glassy behavior.

out that the system relaxes to equilibrium with a character- In our simple model we introduce by hand a separation of

istic time that depends on temperature following a general-. ;
ized VETH law: time scales where the spins represent the fast modes and the

harmonic oscillators the slow ones. Separation of time scales
is one of the most important and most general characteristics
(1.2) that glasses are supposed to have. Indeed, we assume that the
{S} evolve with time on a much shorter time scale than that
of the harmonic oscillators. From the point of view of the
We will often refer toy as the VFTH exponent. spins the{x;} are quenched random variables and the com-
As we show in Sec. IV, the paramet&y in the VFTH  binationJx; can be seen as a random field exerted on spin
law is identified with the Kauzmann temperature, i.e., theOn the other hand, from the point of view of the motion of
temperature such th@(T,) =1, is the minimum of the con- the{x;} the spins are just a noise. To describe the long time
figurational entropyland for anyT<T, Z(T)=Zy]. More-  regime of the{x;} system we can average over this noise by
over, the specific heat displays a discontinuityTgt at that ~ performing the computation of thgS} partition function,
temperature the model thus indicates a real thermodynamigelding an effective Hamiltonian depending only on the
phase transition. In Sec. IV B the Adam-Gibbs relation be-{x;}, which will determine the dynamics of these variables.
tween relaxation time and configurational entropy density is Summing out fast variables is a standard technique in

The model we study, introduced j21], is described by
e local Hamiltonian

A Y
Teq™ €XP| 7= TS

achieved, in the form physics. For instance, in any Landau-Ginzburg-Wilson
theory there occur coefficients of which the temperature de-
N |7 pendence arises from summing out fast processes. We now
Teq™ ex;{ I—Io) (1.2 do the same in our model.

We perform the spin integration in the partition function

ing th I i imation for |
The study of single-time variable dynamics, in Sec. lll, using the saddle point approximation for layand we get

and of two-time variables, in Sec. V, reveals that the value of N

the VFTH exponenty discriminates between different dy- ZS({xi})zf (H dS)exp{—,BH[{xi},{S}]}
namics regimes. One of our results is indeed that three quali- =1

tatively different dynamic regimes arise, respectively, for
>1, 0<y<1, andy=1, the last of which is even model &
dependent. Foy>1 it is, however, possible to rephrase the i
asymptotic dynamics of the model into an out of equilibrium

. ; . K T w+T/2
thermodynamics, using one extra thermodynamic parameter ~exg —BN| =m,—Hm;—w+=1In
only, the effective temperature. 2 2 T
The phrasing of the dynamic properties in terms of a gen- (2.2

eralized out of equilibrium thermodynamic framework is car-

ried out in Sec. IV, where we introduce effective parametersvith 8= 1/T and where we introduced the short hand nota-

to take into account the history of the system. tions
In Sec. V we study two-time observables, such as corre-

lation functions and response functions, and we look at the 1 % 1 % 2
fluctuation-dissipation ratio out of equilibriufi20]. It coin- M=N & % M=g & % 2.3
cides with the effective temperature independently found in

Sec. IV. and
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B \/ ) , T We stress thak and H are actually functions of théx;}
W=\ I my+2JLmy + Lo+ (24 themselvesthroughm, andm, which occur inw). We also
define the constant
We can define the effective Hamiltonian

Hew({XiH)=—TInZg({x}),

D=HJ+KL. (2.12)

o Recalling the definition$2.10 it is useful to note that
obtaining

TN wtTP2 HIJ+KL=HJ+KL=D. (2.12

K
Heﬁ({xi})zgmzN— HmlN—wN+7In T

(2.5 Statics

This can also be written in terms of the internal energy. The partition function of the whole system at equilibrium

U({x;}) and of the entropy of the equilibrium processis.,
the sping Se({xi}):
Z(T)=f DxDSeXF[—BH({Xi},{Si})]c?(Z S?—N)

Her({xi}) =U({xi}) — TSed{Xi}), (2.6
K T K
U({xi})=N{§m2—Hml—w+§, (2.7) =f dmldmzexp{—BN[gmz—Hml—w
T (w+T/2\ T
S (b = g 1- InW+TT/2}’ 2.9 + EIn T ) - §[1+ In(m,—m3)] ] . (213

and it can indeed be verified thetis the Hamiltonian aver- The additional object that appears in the exponent is the
aged over the spins and thag, is the entropy of the spins. ~contribution to the entropy of thi} configurations:

Another fundamental ingredient for the model is the in-
tro_duction of a (_:onstraint on t_h_e phase space to avo_id the IEE[1+In(m2—m§)]. (2.14
existence of a single global minimum, thus implementing a 2
large degeneracy of the allowable lowest states. The con-

regime. It reads will be widely discussed in Sec. IV after having introduced

the dynamics. It comes from the Jacobifnof the transfor-
m,—mZ=m,, (2.9  mation of variablesDx—dm,dm, [see Eq.(2.3)]. We can
compute the larg&\ limit of this partition using once again

wherem is a fixed, but arpitrary, strictly positiye constant. tha saddle point approximation. The saddle point equations
The model glass now obtained has no crystalline state. Thigie found by minimizing with respect tm; and m, the

constraint applied to the harmonic oscillator dynamics i; Function

way to reproduce the behavior of good glass formers, i.e.,

substances for which nucleation of the crystal phase is espe-

cially unlikely even at very slow cooling ratés.g., network NF(Tamlme)E
formers BO5; and Si@Q, molecular organics such as glycerol

and atactic polystyrene, and different multicomponent liquid 1
mixtures. These are substances for which there are noncrys- + 2
talline packing modes for the particles composing them that

have intrinsically low energy. The amorphous configurations (219
are thus favored. In general the crystal state still exists, at _ _
lower energy, but the probability of nucleating a crystal in-Denoting the saddle point valuesmf andm, asm,; andm,
stead of a glass is negligible. In specific cadeisary solu- the equations are

tions) the glassy state can even be lower in energy than the

K
Emz—Hml—w

=~

w+T/2
T

In

—1—In(m2—m§)}.

crystalline one and is thermodynamically stable with respect —  H(my,my)
. . ml:"’_—_7 (216}
to any crystal configuratiof22]. K(my,m,)
As we will explain in detail in the next section, we impose
a dynamics that satisfies this constraint and couples the oth- -
erwise noninteractingx;} in a dynamic way. My=m2+—————. (2.17
To shorten the notation for later purposes we define here K(mq,m,)

the modified “spring constantK and “external field” H: _ _
5 The form of the solutionsn,(T), m,(T) is quite compli-
R=K_ J H=H+ JL 2.10 cated because each of these equations is actually a fourth
w+T/2’ w+T/2° ' order equation, but they can be explicitly computed. In terms
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of the equilibrium valuesﬁk we find the following expression for the equilibrium free energy density:

_ _ K_ _ _
F(T.ml(T)ymz(T)):N[Emz_Hml_W(mlymz)
TN| w(m;,m,)+T/2 _
+ —|In———=———1—In[my,— (my)?] (2.18
2 T
:U(Taal152)_1—5&[{1-151152)_TI(TaalaaZ)' (219
For the Hessian o8F(T,m;,m,)/N we find the following expressions:
J2L? m,+m? J°L Lo m
+ —
WW+T/2)2 (my—m2)2  2w(w+T/2)2  (m,—m5)? (220
H= 2.2
J3L S J* +T 1
2Ww(W+T/2)2  (mp—m3)? Aw(w+T/2)%2 2 (my—m3)?
12 212 JL my+mi  —m,
2
=B———— — 1 2.2
'BZW(W+T/2)2 L =] (my-m3)2| —-my 5 (22}
=Hessian of8Hex(My,m,) — Hessian ofZ(m;,m,). (2.22

The determinant of the Hessian ¢fF(T,m;,m,)/N,
computed at equilibrium, is

deifH)= (2.23

1
_—_“(1+QwD+ Poo),
2= Mi)

2(m

which is always positive. In the formula above we intro-
duced the abbreviations

J2(HI+KL) _ (2.24
sEoo——, »=0Q(M¢,My), .
O Bwwr Tz MM
J4(my—m3) -
p=—— Y p.=P(m.m,), (22
2Rw(w+T/2)2 (Mo mg), (229

which we will often use in the following. The inverse matrix
turns out to be

" 2
_ my—m;
= l=—__< 1
C=H 1+Q.D+P.,
— L
1+P, 2m1—23Poc
X
— L ) ) L?
2m1—23P0c 4m1+2(m2—m1)+4¥Pm

(2.26

valuesm;, m,, times a factorN, as we can immediately

check by expandin§ to the second order arouma, andm,
in Eq. (2.13. This holds for temperatures high enough that,
asymptotically, the constrairi2.9) plays no role.

Ill. ANALYTICALLY SOLVABLE MONTE CARLO
DYNAMICS WITH GLASSY ASPECTS

We assume as the dynamics a generalization of previously
introduced parallel Monte Carlo dynamics for the harmonic
oscillators. This kind of analytic Monte Carlo approach was
first introduced i 23], and later applied if19] to the sim-
pler, exactly solvable harmonic oscillator modethich is
just our model after setting=L=0) and by one of u§2,3]
also for a spherical spin modékhich is the present model
after settingH =K =0 and considering thgx;} as quenched
random variablgs The dynamical model thus obtained with
a very simple Hamiltonian and a contrived dynamics has the
benefit of being not only programmable on a computer, but
even solvable analytically, which yields a much deeper in-
sight into its properties. Moreover, in the long time domain
the dynamics looks quite reasonable in regard to what one
might expect of any system with a VFTH law in its statics.

In a Monte Carlo step a random updating of the variables
is performed §—x/ =x+r;/\N) where the{r;} have a
Gaussian distribution with zero mean and varianée We
indicate byx (without any subscriptthe energy difference
between the new and the old states, vizs=H({x/})

The elements of this matrix are the thermodynamic averages H({x;}). If the energy of the new configuration is higher

of the fluctuations ofm; and m, around their equilibrium

than the energy of the initial configuratior>¢0) the move
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is accepted with a probabilitw(8x) =exp(— 8x); if the new  where
energy is lower or equalx&0) it is always accepted

[W(Bx)=1]. x=A%K/2, (3.43
The updating is parallel and it is this particular feature

that gives the collective behavior leading to exponentially A =A%K?(my—m3)+A%K2(m,—H/K)?,  (3.4b

divergent time scales in a model with no interactions be-

tween particles such us ours. A sequential updating would _ ml—H/R X—X

not produce any glassy effect. In this sense there is an anal- y(x)= =, (3.59

ogy with facilitated Ising model§24], and with the kinetic m,—mi+(m,—H/K)? K
lattice-glass model with contrived dynamics of Kob and
Andersen[25], where the transition probabilities depend on
the neighboring configuration; this dynamics may induce
glassy behavior in situations where ordinary Glauber dynam-
ics [26] would not. Models of these types may give valuable  The variance of the randomly chosen updating of the
insights into the Iong time dynamics, at least within a C|aSSS|OW variables was a constant in previous approaches
that exhibits some long time universality. [19,2,3,23. That was enough to cause an Arrhenius relax-
In a Monte Carlo step the quantitie$m;=2;x; and  ation of the glass. To find a VFTH-like relaxation, in the
Nm,==x? are updated. Let us denote their changeyby present model we les? depend on the distance to the con-
andy,, respectively. Followind3] we get the distribution straint, i.e., on the wholgx;} configuration before the Monte

A?(my,—m?)
A= g (3.5b)
m,—m3i+(m;—H/K)

function ofy, andy,, for given values ofm; andm,: Carlo step:
ey may= [ T p( i ) A2(t) =8[my(t) ~ ()] > 7
Yo my,my)= exp — — =8[my(t)—m ,
PLY1:Y2lMs M2 i J2mA2 272 2 N map() —m2(t) —my
(3.6
X0 EI Xi _Z Xi_yl) whereB is a constant ang is an exponent larger than zero
that we discussed already as being used in practice to make
%S 2 X’Z—E w2 the best VFTH-type fitting of the relaxation time in experi-
— D& Y ments[1,28]. In our modely is a constant; it has no pre-
scribed value since we do not make any connection with a
1 microscopic system. In the standard VFTH law one would
RCN ey just takey=1. One of our results will be to see that there are
AmATym,—my three qualitatively different regimeg>1, y=1, and 6<vy
2 _A2_ 2 <1, showing that the situatiop=1 is actually nongeneric.
Ac—=2y;m
Xe ;{ - y—lz — (yz 5 L > ) ) We also define a quantity that we shall frequently encoun-
2A 8A%(my—mj) ter in the following:
o I'(t) ( ° )v 3.7
. t)= . .
We can express the energy difference as m2(t)—m§(t)—mo
Y= E B 3.2 The nearer the system goes to the consti@iat, the smaller
2 Y2~ Y1 ' the value ofm,—m?—my), the larger the variance becomes,

thus implying almost always a refusal of the proposed updat-
upon neglecting the variations of; andm, that are of order ing. In this way, in the neighborhood of the constraint, the
(Yi/N)?>~AZIN. dynamics is very slow and goes on through very rare but
In terms of the energy differenceand ofy=y; the dis-  very large moves, a thing that can be interpreted as activated
tribution function can be formally written as the product of dynamics. When the constraint is reacfieecomes infinite

two other Gaussian distributions: and the system dynamics is stuck forever. The system no

longer evolves toward equilibrium but is blocked in one

P(Y1,y2lmg,mp)dy,dy, single ergodic component of the configuration space. At

P 2
= p(x|my,my) p(y|x,my ,m,)dxdy large epough t_empgratures,_ Fhe comblnamnj(t)—ml(t)
_ —mg will remain strictly positive. The highest temperature
1 p( (x—x)2> T, at which it can vanish fot—c is identified with the
exp —
2mA, 24, Kauzmann temperaturg (see Sec. IV A

The question whether detailed balance is satisfied or not is
also nontrivial in our model. Indeed, it happens to be satis-
)dxdy, (3.3) fied for this kind of dynamics only for larg8l. For exact
detailed balance we should have

X

. p( Ly—y(07?
Va2mA, 24y
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p(x|my,my)exp — Bx)=p(—x|my,m,) (3.9 When u,=0, the constraint is reached. This will happen
if the temperature is low enougi&€Ty). T, is the highest
but now, when we perform the inverse majve}—{x}, the temperature at which the constraint is finally reached by the

probability distribution also depends on thg} throughA? system. AboveT, equilibrium will be achieved yvithout

as defined in Eq(3.6). Thus the right hand side of the de- reaching the constraint. The temperature is too high for the

tailed balance consists of p(—x|m.,m; .A,z)gﬁp system to notice at all that there is a constraint on the con-
191112,

(—x|m;,m,;A?%). Expanding this probability distribution in figurations:

powers of 1N, however, we get thap(—x|m;,m,;A’?) : _
=p(—x|m;,m,;A%)+0O(A?%N). Terms of O(A%/N) were t“_TCMZ(t) #2(T)=0. (313
already neglected in the approximation wfdone in Eq.

(3.2). So, inasmuch as the whole approach is valid only forAt and belowT, the system goes to configurations that be-
N—co, detailed balance is also satisfied; it would be slightlycome arbitrarily close to the constraint, and then stays there
violated in a finiteN simulation. We work at very larghdl  for arbitrarily long times.

and, even thoughh?=T'(t) grows as the system approaches When w,=0 equilibrium is obtained and the equilibrium
equilibrium (it even diverges at the Kauzmann temperature values ofm; andm, are given by the solution of the equa-
we perform first the thermodynamic limit computing the dy- tions

namics equation and only eventually the lirit:oo. If we

did the opposite there would be a region around the Kauz- ﬁ(al,az) =
mann temperature where the detailed balance is violated and R(H m,) =My, 3.14
K . . P 1,112
the dynamics is not the one discussed here. However, this is
not our aim since we are interested in the ergodicity breaking T
that takes place in systems with a large numi#erogadro- EZ_E%:_‘_—_Q(T_TO)_;_mOa(TO_T)_
like) of variables. K(mg,my)
In the harmonic oscillator model and in the spherical spin (3.19

model studied in[19,2,3, the dynamics was performed . - .
within this approach, but at fixed. Both cases showed a 6(T) is the Heaviside step function. . .
relaxation time diverging at low temperature with an Arrhen- For T=To, th_ese are the saddle point equations
ius law, typical ofstrong glasses. We could also study en- (2.16,(2.17), with m, denoting the equilibrium value afy .
hanced Arrhenius law by settimg,=0 in the present model When T reaches the valu@,=m,K(T,), set by the con-
(look at[27] for the study of such a modebut here we want,  straint (2.9), the combination?z— E% becomes, foit— oo,
instead, to develop a model representingagile glass with  jndependent of temperature: it remains equahtgfor all

a Kauzmann transition at a finite temperature. T<T,.
The Monte Carlo equations for the dynamicsnof and When all system parameters are fix@jing setup the
m, can now be derived along the lines[@. They read equations of motiori3.9),(3.10 become, in terms of, and
M2,

mlzf dy;dy,W(BX)y1p(Y1,Y2|my,my) .
MlZ_JQf dxW(Bx)xp(x|my,my,)

- [ axwaxyiopedmg,m,). 39 N
—<1+QD)f AXWBX)Y(X)p(X| Mg, ),

) (3.1
my= f dy dy,W(Bx)y,p(y1,Y2|lmy,my)

.2
2 - ,U~2=rf dxW(BX)xp(x|my,my)
=§J dxW(BX)[x+Hy(x) Ip(xImy,my). (3.10 K

_ _ _ +2,U~1J dXW(BX)y(x)p(X|my,m,),  (3.17)
Before performing a study of the dynamics we define two

new variablesw, andu, depending orm, andm, and rep- hare e have useB andQ defined, respectively, in Egs.
resenting, respectively, the deviation from the eqwhbnum(zlm and (2.24).

state and the distance from the constraint: ~
We also shorten the expressikifm, — mi) by the param-

~ eter
pa= My, (3.1 T, =R(mp—m?), (3.19

) possibly depending on time through,;(t) and m,(t). For
H2=My— M — M. (312 the moment this is just an abbreviation but in the next section
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we will show that an alternative description of the dynamicswhich has a different behavior aboVg, whereT,, tends toT

is possible whereT(t) turns out to be a mapping of the i, the infinite time limit, and below, wher&, never equals
history of the system into an effective thermodynamic pa+ne neat-bath temperatufsee Sec. IV A

rameter. This effective temperature would be the temperature The solution to Eq(3.21) can be easily found by neglect-

of a system at equilibrium visiting with the same frequencyjnq the second term, proportional . It is expressed in the
the same states that the actual—out of equ|I|br|um—syster‘nnp“dt form

at temperaturd visits on a given time scale during its dy-

namics. R S
In the time regime wher€>x2/T§~O(1) [i.e., uo(t) 27Ter1{| ,F(t)] - exp[l“i/t)] =8r1m0yt+const,
<1], the Gaussian distribution of thecan be approximated ! ()™ m
( | ) eX[X_F) X ) where
X|my,my)= ———=exp =—
P )= P - 2T,

:i PG
erf(z) \/;foe dt. (3.26

2 4
x| 1— + (3.19
( 16T2r 512T;}r2)

and Eqgs.(3.16 and(3.17) become

To second order approximation this can be written as

1

t)= .
h1=4Y[JQT<(mo+M2)r<1_ w) #2)= (et o L In(uto) 17

(3.27

The constant$, andc depend on the temperature phase as
(3.20 will be clarified in the following.
’ To study the case abovk,, we also introduce the vari-
able

— w1 (1+QD)[T—(1—3r+4r?)]

3(1—2r+2r2))

M2:—4Y[2(m0+,u,2)l’<1— T 5/1«2('()5//«2(0_;2 (3.28

' (3.21)  Where u, is defined in Eq.(3.13. Since in this range of

—u?[T—(1-3r+4r?)]
temperatur@ ¢(t) — T~ du,(t), the first order expansion of

wherer is the normalized difference between the paramete'rS
T. and the heat-bath temperature

i) (1 Po )

= = +
_ T T mo+ua(T) - 1+Q=D
r= T (3.22
(t) 2P..D (329
d M1 = — ) :
o TRed Mo+ 12(T)1(1+Q.D)
exp—T) , . .
Y=" 2 (1-1). (3.23  WhereP., andQ., were introduced, together withandQ, in
vl Egs.(2.25 and(2.24 and, from a dynamical point of view,
they are nothing other than
Y is the leading term of the expansion of the integral repre-
senting the acceptance rate of the Monte Carlo dynamics, Q.=IlmQ, P.=IlmP. (3.30
t—o0 t—oo
f dxW( Bx)p(x|my,m;) In this case in Eq(3.27) cis equal to 1/2 and the expression
for tg in terms of the parameters of the model is
exp(—1I') (1-1)
=——(1-r
w(1+Q.D
JaT Vm(1+Q.D) @30

0= 84(1+P.+Q.D)

1 2
(1—-2r+4r2)+0(u3")|.

X 1—ﬁ

Below T, the qualitative behavior ofi,(t) (in this case

(3.24  theu, partis zergis the same, buf is never reached. This
implies that r goes to some asymptotic constant .
The solutions to Eq€3.20 and(3.21) depend on the relative Concerning the solutioi3.27) the only difference is in the
sizes of u, and w,, and thus also ory, as well as orr, values
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FIG. 1. The difference betweemn,(t) and its asymptotic value
Mo is plotted for heat-bath temperatufe=0.41, slightly above the
Kauzmann temperaturd ,=4.00248. At this temperatures,
=0.097 63. The case is plotted witi=J=1, H=L=0.1, m,
=5,B=1, andy=2. The “exact” curve represents the exact so-
lution (3.25, with initial conditionT'(0)=1. The “approx” curve
is a plot of the approximated solutidB.27). In the inset the initial
behavior is shown: clearly the approximati@®.27) is very good
already after two decades of the dynamics.

B\m

8myyr(1—r,)’

_2+'y

Cc= 2_’)/ (332)

[} ‘t()E

In Fig. 1 we show the exact solution, numerically com-
puted, of Eq.(3.21) for a particular choice of the parameter
valuesK=J=1,H=L=0.1,my=5, B=1, y=2. We can
see that after a couple of decades the behavior is that given
Eq. (3.27).

The ratio of Eqs(3.20 and(3.2]) gives the equation

dug  py(1+QD)(I'+2—-3r+2r%)—JQTer
duz  2r(mg+up)—u(D+2-3r+2r?)

(3.33

With respect to the relative weights pf, and x, we can

PHYSICAL REVIEW B4 011508

Ky (=)0

10% 10%° 10%

10°

FIG. 2. Ratio of u,/u,(t) at different temperatures, at and
above the Kauzmann temperature. Too far away figyithe con-
tribution of u, to u,(t) becomes relevant at shorter time decades.
The case is plotted witkK=J=1, H=L=0.1, my=5, and with a
VFTH exponenty=2. For this set of parameters the Kauzmann
temperature turns out to big,=4.002 48.

T'(t) -T- 7F5M2(t)

(3.39

M2

with leimtﬂwl“(t). We are most interested in what hap-
pens next to the Kauzmann temperature, i.e., for venfhig
at long but not extremely long times, which meafs,(t) is
small but not vanishing. A more detailed treatment, includ-
ng an expansion iff — T, of u, appearing inP,, andQ., ,

can also be done, examining carefully to what exjentcan

be approximately neglected with respectdi@,(t). We can
neglectu, with respect toSu,(t) at temperatures very close
to the Kauzmann temperature and for times that are not ex-
tremely long, so that we are far from thermalization and the
dynamics still has aging behavior. In Fig. 2 we show the

relative weight ofu, in u,(t) for a specific case. As is clear
from the figure, as soon as we go too far frdgmwe cannot

identify different regimes, where the solution has differentneglect inu(t) its asymptotic values..

behaviors.

(2) T<Ty, y>1. In this and in the following cases the

(D) T.>T0. The Ie_ading term of the solution is given by asymptotic value ofu,(t) is ;2:0 s0 thatdu,(t) = us(t).
the stationary solution. We can also neglect the term of, this dynamic regime also the adiabatic approximation can

O(,u%l“) in the denominator. Using the expansi@?29 for
r we get

1 1+Px+ona 3:34

r= — .
mo+pu, 1+Q:D =

and

TIQu(1+P.+Q..D) Sua(t)
pa(t) =———= S ———+0(5u3)

(Mo+u2)(1+Q.D) T
+O(ou3"th). (3.39

Here we have also expand&qt) as

be carried out and the second term in the denominator of Eq.
(3.33 is again negligible. In this case the leading ternm of

its expansion in powers q@f,, r,,, is of O(1). Therefore we

get

JTr.Q. 1
pa(O)= 1+Q30QD r(t)+o(“5+y)’ (3.39
where
Te=limK(my(t),my(t))[ Mo+ u,(t)]=K.mg,
t—
(3.39
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K..= limK(my(t),my(t)), 3.3 2
A mat.me(0) 339 )=~ T AN a0+ capd(D), (346
T.-T which is not invertible analytically. It is clear anyway that in
r,=— . (3.40  this subregimeu;>u,. c, can take any value.
2T~ T (e) e<1/2. The solution is

(3) T<Ty, y=1. In this case the adiabatic expansion is Mgl o (1—2€)
no longer consistent. We have to solve E§.33 taking pa(t)= TR

du,/du, into account. To leading order the equation takes

the form Cy[1+Q.D\Ye[1—2¢| Vet -
[ Mk e) #alt }
d IN1+Q.,D)—JQ,Ter
e L PR BT (3.47
2 wherec,;>0. Still w;> uo.
+O(T'uy) +cO(T p1pz). (3.4 (4) T<T,, y<1. Considering also the term3I" in the

denominator of Eq(3.33, the solution is now
Defining the quantitye=B(1+Q.D)/2r.mg we identify a3.33

other five subregimes in the cage-1. rmmo/ 1+Q..D
(a) e>1. The solution is pa(t)= F(t)\l_ Pmor y,uz(t)l“(t) . (3.48
_ JQ.Torw 1 In this low temperature regimg,> u, once again.
pa(t) = 2r.mo(e—1) ma(t) =€y 6_1“2(t)' (3.42 For y=1, e<1/2 and fory<1 the solution to Eq(3.45

involves only the absolute value @f;, thus giving two pos-
The exponent is always positive, at least in cooling, be- Sible choices for the sign of the functigny(u,). In order to
cause?e>T, makingr.. andQ.. positive.c, is also positive guarantee _continuity of., at _the paramete_r values at which
because it is the exponential of the integration constiwet ("€ dynamics changes regime, we requirg to have the
value of which depends on the initial conditionSincee ~ S&me sign in two contiguous regimes. That means that in

>1, the second term in the right hand side can be neglecte@ds: (3-40 (3.47, and(3.48 we chose the plus sign.
and i~ . The time dependent variablgs,(t) and u,(t) give the

(b) e=1. We find dynamic behavior of every observable in the long, but not
' extremely long, time regime, i.e., in the aging regime. When
the time increases further the dynamics will exponentially

ITer Q. In puy(t) g . _
(t)=— +Coftn, (3.43  relax to equilibrium as exp(t/7,p). We will see whatreq is
H 1+Q.D TI(n) = 2 in the next section.

wherec, is th_e integration constant ar_1d can take any value. IV. OUT OF EQUILIBRIUM THERMODYNAMICS
In the long time dynamics the logarithmic term will take

over and, independently of the initial conditiong;> u» The history of a system that is far from equilibrium can be

and will be positive. expressed by a number of effective parameters, like the ef-
(c) 1/2<e<1. The second term in Eq3.42 is leading fective temperature or other effective fields, in order to recast

and the solution is the out of equilibrium dynamics in a thermodynamic ap-

proach[3]. The number of effective parameters needed to
1, make such a translation is, in principle, equal to the number
pa(D)=Cy 7 pa(b). (3449 of independent observables considered. For a certain class of
system, however, there is some effective thermalization and
¢, is a positive constant and,> x, and positive. the effe_zctlve parameters pertaining to processes having the
(d) e=1/2. Whene<1/2 the second term in the denomi- S2Me time scale become asymptotically equal to each other
nator, always neglected up to now, has to be taken into adl “'.“e- Examplgs of out of equilibrium regimes govgrned by.
single effective temperature have been considered in

count. In this case the leading term in the denominator goe .
— . 3,29. In computer glasses the approach has been applied
to zero andJT.r.Q., can be neglected with respect to with some succes0,31]

"ﬁlr(1+Q.°°D) in the numerator. We can thus easily solve G en the solution of the dynamigand thus the form of
the equation the functionam;(t) andm,(t)] a quasistatic approach can be

followed by computing the partition functiod, of all the

2
d'“2_ 2rmo—2uil (3.45 macroscopically equivalent statéthose having the same

du;  wal(1+Q.D)’ values form; ;) at the given timet. The measure on which
this out of equilibrium partition function is evaluated is not
For e=1/2 we get the Gibbs measure. In order to generalize the equilibrium
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thermodynamics we assume an effective temperafyand Effective temperature from generalized first lavetting
an effective fieldH., and substitute the equilibrium measure M=Nm;,, and using Egs(2.7), (2.8), and(2.14), the differ-
by exd —Hew({Xi}, T,He)/ Te], whereHq was introduced in  ential of the free energi.2) turns out to be

Eq. (2.6) and the true external field in it has been substi-

tuted by an effective fieltH,. T, andH, are at this step of dF= =S dT-ZdT,—MdHe, (4.6)
the computation just fictitious parameters. However, as soon

as we get the expression of the “thermodynamic” potentialthus implying

Fe=—T.InZ, as a function of macroscopic variables ,

and effective parameters, we can fix and H, as taking dU=TdSp+ TedZ+(He—H)dM—MdH. (4.7

those values that make the potential as small as possible. We | . _ ) _
thus have to minimizeF, with respect tom; and m, to Using this expression we are able to write down the first law

determineT, andH, and evaluate the resulting analytic ex- ©f thérmodynamicsiU=dQ+dW, in the two-temperature—
pressions ain, = m (t) andm,=m,(t) given by the dynam- two-field case, where the change in work done on the system
ics at the considered tinteCounting all the macroscopically 1S @W=—MdH. In order for the conservation of energy to
equivalent states at the tinteat which the dynamical vari- be satisfied the heat variation has, then, to take the form

ables take values; andm,, we get
L andmg, we g AQ=TdSp+ TedZ+(He— H)dM. 4.9
Ze(mlva;TeyHe) .. . . .
This is the same expression obtained in the two-temperature
B 1 picture of[29] where the fields where absent. At equilibrium,
zf Dxexp{— T_eHeff({xi}'T'He)} whereH,=H and T,=T, this reduces to the usual expres-
sion for ideal reversible quasistatic transformationi®
=TdS with the total entropy5=S,,+ Z.
XS Nmy— > % | 8| Nm,— >, x2|. (4.1 ep .
! z.: ') ( 2 2.: ' 4.1 From Eq.(4.8) the complete expression for the rate of
change of the heat of the system turns out to be
From this partition function we can build an effective
thermodynamic potential as a function™f andH,, as well ) . TKE(W+T/2) K
as of T andH, where the effective parameters depend on time Q=Nu1——F=7——+Nuzx7
) 2DJ 2
through the time dependent values of ting and m, solu-

tions of the dynamics. They actually are a way of describing K ) s
the evolution in time of the system out of equilibrium. The M = (pq+ u,KIQ).
effective free energy takes the form 2(1+QD—=KJQuy)
4.9
Fe(t)=U(my(t),my(1))— TS p(my(t),my(t))
—To(H)Z(My(t),Mo(t)) +[H—He(t) INmy (1), The heat flowing out of the system isQ. Referring to the
4.2 aging regimes described in Sec. Ill the quan@yturns out
' to be proportional tou, in the regimes 1 T>T,) and 2
with (T<Ty,y>1). In the dynamic regimes 3a and 30 (
_ <To,y=1,=1) Qo pu;+ u,. For regimes 3c, 3d, and 3e
Te(t)=K(my(t), my(t))[ Mo+ ma(t)], (43 (T<Ty,y=1, e<1) and for regime 4 T<T,y,y<1) Q
~ L
He(t)=H—=K(my(t),ma(t)) wa(t), (4.4 In every dynamic regime.; and u, are negative and this

implies that the heat flow of the out of equilibrium system is
positive in its approach to equilibrium, as it should be, no
matter the values of the parameters of the model.
N Starting from the first law of thermodynamics, we can
I(t) = E{1+|n[m0+’u2(t)]} (4.5 derive thg eff_ect|ve temperature in ygt another way, through
a generalization of the Maxwell relatioh=gU/dS valid at
equilibrium for a system of internal energlyyand entropys,
is the configurational entrop{2.14 and the expressions for \ith the derivative taken at constant magnetizationvol-
U andS, are given in Egs(2.7) and(2.9). _ ume. We put for simplicityH.=H in the rest of this sub-
As we see from Eqsi4.3) and (4.4) in the dynamic re-  section. Out of equilibrium, together with the previous Max-
gimes 1 and 2, reported in Sec. Ill, wheug<pu,, the ef-  e|| relation for equilibrium processesvhere S has to be

fective temperature alone is enough for a complete thermogypstituted bys, ) the following generalization also holds:
dynamic description of the dominant physic phenomena

where the last term df . replaces the- HNmy occurring in
U [see Eq(2.7] by —H,Nm,. The guantity

(He=H), while in the regimes 3a and 3ku{~ u,) and in JuU
3c, 3d, 3e, and 44> u,), whenu is no longer negligible, Te=77| - (4.10
the effective fieldH, is also needed. Sep
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A more feasible identity, where the variable to be kept con-  T(T)

stant during the transformation is the bath temperature, rather
than the entropy of the fast processes, can be obtained 5t .
[32,33,13. Let us introduce, with this aim, the functiah:
T, } . 4
D=F +T.Z, (4.11) 0
inducingd®=T.dZ— S, dT. Through this auxiliary poten- 3t 1
tial function® we can then rewrite the effective temperature )
as - |
Tuty= 22 4.1 al 1
=—7| . (4.12
T 0 \ \ \ . )
0 1 2 3 T 5 T

This result is a firm prediction for systems that satisfy the
assumption of a two-temperature thermodynamics. For un- F|G. 3. In the static regime the effective temperature is shown
derlying mechanisms in specific cases p&2,33,12. Writ-  as a function of the heat-bath temperature. At high temperature they
ing Eq.(4.12 as®/7 and using Eqs(3.9) and(3.10 we get  coincide but below the Kauzmann transitidg does not reacH,
[neglecting terms 0O (u4)] not even in the infinite time limit. The system remains out of equi-
librium for ever. Values of the constants akk=J=1, H=L

Te(t) =K(my(t),my())[my(t) —mi()] (413  =0.1,me=5.

i ith Eq4.3). - N — -
in agreement with Eq4.3 (KMo—Tot T)(KMg— To) (ITo) 2+ D2mo(Kmy—To)2

A. Statics —J*my(To)?=0, (4.19

T, is defined as the temperature at which the constraint is
reached from above: some configurations become infeasible
and the valleys of the free energy landscape are divided bg quartic equation for the effective temperature in the infinite
infinite barriers. The breaking of ergodicity in a landscapetime limit. The same equation evaluatedlat=T=T, gives
with many minima gives rise to a real thermodynamic phaseus the value of the Kauzmann temperatiligeas a function

transition[11]. . . of the parameter of the model. In Fig. 3 we plot versusT
When the constrain®.9) on the phase space of the} is for a choice of parameter values

first reached, afly, in the infinite time limit, 7 goes to its From Ed.(4.14 or Fig. 3 we 'observe thad T./d Tl

minimal value Z,=Z(Ty)=1+Inm,. Coming from high a-(4.14 9: e |T0

temperature there would thus be a transition from a many~1 whereas, coming from above the Kauzmann tempera-
(metastablestates phase to a phase in which the system i&ure, one has, of courselTe/dT|;:=1. The derivative of
stuck forever in one single minimum. This transition is whatT (T) thus shows a discontinuity dt=T,,.

is thought to happen in real glasses, at the so called Kauz- Any thermodynamic function, liké&J andm,, will depend
mann temperature. Since we are using the continuous vargn the heat-bath temperature both explicitly and through this

able{x}, the entropyZ (as well asSp) is, in our case, ill  effective temperature. For the specific heat we will have, for
defined at low temperature: it would diverge likellat zero  jhstance

temperature if no constraint were present. Our vdl{ii,) is
greater than zero, because this entropy counts all the multiple
ways in which the continuous harmonic oscillators can ar-
range themselves in order to satisfy the constr&h®). C=
Since we are dealing with classical variables we can bypass
this inconvenience by just subtracting fréhthe constant,,
to makeZ(T=T,)=0. The entropy valu&, is related to the
dynamics on time scales where all the degenerate minima aféhis is of the same fornC=c;+c,(dT¢/dT), assumed
sampled. These are much longer than the scales of our intesriginally by Tool [34] for the study of caloric behavior in
est, and for our purposes the constagplays no role. the glass formation region.

To see how the transition takes place we first look at the The discontinuity indT,/dT|,; causes a discontinuity in
asymptotic behavior of the effective temperature. WHAen the specific heat and also in the quantitym, /4T|, , called
=T, andt—, T, becomes the heat-bath temperatlite magnetizability in[2,3] (it is the analog of a thermal expan-
WhenT<T,, instead,T, never reaches such a temperature sjvity for the model here describgcbecause both of these
It rather goes toward some limiting valdg(T) that we can  quantities contain terms proportional @T./dT|y. One
get from Eq.(4.3), which may be rewritten for clarity in the could now discuss the Ehrenfest relations between these dis-
explicit form continuities, and the Prigogine-Defay ratio, as was done for

LLau
N oT,

dTe

H,T dT

(4.19

H
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related models by one of U29,2,3. Because of the close 1+DQ.+P

analogy between all these cases, we shall not go deeper into  Te(t)=To+ TDMRJM('EHO(T—T&-
this at the present moment. * (4.21)
B. Dynamics We get
The relaxation time is the characteristic time scale on A(T) \7 A(Ty) |7
which the system initially out of equilibriuntbecause, for T(t)ocexr{m) = 41_([?) , (4.22
example, of a sudden quench to low temperatustaxes € € 0
toward equilibrium. It can be defined, for instance, from the B(1+DQ,+P.)
dynamical equations of the internal energy per harmonic os- A(T)= K., (4.23
cillator u=U/N, 1+Q.D
_ u where A(Ty) <A, meaning that in the static regime is
u=——, (4.16  more divergent.
Teq (1) T<Ty,y>1. For T<T, the relaxation time always

diverges fort—oo. However, as was done in the case above
the time at which the quantity of interest goes te of its :—OI f)c()r t:hﬁ tri(rarl]axatlgnbln th: izg'rn%rer?émex’ :;m msc}amt?nr(:)usf
initial value. In any temperature regime it turns out that thetﬁa ?f Otiv ter%a ; E,E (;o S ir? ethafir f prdesrsex nei ns cf)
relaxation time has an exponential behaviol'in € efiective temperature using the Tirst order expansion o

or, equivalently, from the equations of motion fog, m, as

Te in /.L2:
T ~eF=ex;{E)7. (4.17) =  14DQu+Poy
eq Mo To()=Te+ WKWMZ(U (4.29
Making use of the solutio3.27) we find the following be-  \ye find
havior for the relaxation time versus the heat-bath tempera-
ture. o A(T) Y
(1) T>Tg. uy(t)— u,(T) and near enough to the Kauz- () =7(T,Te(t))xexg ———=—| , (4295
Te(t) = Te(T)

mann temperature we can linearize the lattelf inT,. For

t—o we get an exponential decay with relaxation time whereA(T) is the one given in Eq4.23. The aging behav-

A |7 ior just above and well below, are thus intimately related.

(4189  The expression(4.25 resembles a VFTH law where the
heat-bath temperature has been substituted by a time depen-
dent effective temperaturg,(t) and the Kauzmann tempera-

0
T-To

[ 9ma(T) ! ture by the asymptotic valug,. Such a relation for the time
Ao=B oT scale of the aging dynamics could hold very well in more
K general systems.
BRW(K—RM,)(1+DQOC+POO)’ (3) T<Ty,y=<L1. In these regimes, where,; cannot be
= — - . (4.19  neglected with respect ta,, there is no simple expression
(K=K.)(14DQ.)~K.P. | for .

This behavior is a generalized Vogel-Fulcher-Tammann- V. TWO-TIME VARIABLES: BREAKING OF TIME-
Hesse law6—8], wherey can have any value and in particu- TRANSLATION INVARIANCE AND THE FLUCTUATION-
lar y=1. DISSIPATION RELATION

Looking at the configurational entropy, since at the first
order expansion im, we haveZ—Zy=(N/2mg) u,, we also
find from Eq.(4.17 the Adam-Gibbs relatiof9]

In this section we compute the correlation and response
functions which, unlike the energy and the quantitiegt)
and m,(t), depend in a nontrivial way on two times when
y the system is out of equilibrium, thus showing directly the
. (4.20 loss of time-translation invariance with respect to the case at
equilibrium. The aim of computing such quantities is also to

F{ NB
Teg®€XP 5———~
e 2mo(T-1o)
I . . . build a fluctuation-dissipation relation and look at the mean-
Far from equilibrium, in the aging regime where the relax-;

S | 4 . “™ing  of the fluctuation-dissipation  ratio (FDR)
ation is very slow, we can still define a time dependent re-, ,C(t,t")/G(t,t") far from equilibrium
laxation time” giving the characteristic time scale on which ' <y ) :

h K | | o The correlation functions between the thermodynamic
the a processes are taking place. Always Tovery near to g,,cqation of a guantityn,(t) at timet and that of a quantity

To, in the aging regimey,, the static part ofu,, is negli-  m,(t’) at a different timet’ are defined as
gible with respect to the dynamic padju, so that for the
effective temperature we have the following expansion: Cap(t,t)=N{Sm,(t)omy(t")), a,b=1,2, (5.1
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where(- - -)_is the. average over the dynamic processes, i.e., Q. J2(m0+;2)(3W+ TI2)
the harmonic oscillators. Q= — — = -3P..
The response of an observalg at timet to a perturba- (1+QxD)(mg+ up) 2wi(w+T/2)
tion in a conjugate field, at some previous tim& takes (5.7
the form . - . : .
is the coefficient ofsu,(t) in the first order expansion @,
o(mg(t
Gab(t,t’)zw, a,b=12. (5.2 Q(t) =Q+Q1oua(t), (5.9
SHy(t")

and
In our modelH;=H andH,=—K/2.

Since we will very often make use of the derivatives with W= \/JZHZ+2\] Lmy+L2+T%4, (5.9
respect tom; and m, of the integrals given by the Monte
Carlo dynamics introduced in Sec. Ill, we show them in the
Appendix explicitly computed and we shorten the notation
by defining the variabled, and g,, k=0,1,2,3, in Egs.

_ Of Mo.
(A11)-(A18). In addition to the expansio(b.8) of Q we also give the

expansions to first order idu,(t) of the quantities [de-

fined in Eq.(3.22], m;, K [Eq. (2.10], P [Eq. (2.25], and
First we analyze the case above the Kauzmann temper® [Eq. (2.24]:

ture. In this case the expansion of E¢s11)—(A18) in pow-

In the following formulas the derivatives qf,, as well as
w1 itself, have to be considered as general, regular functions

A. High temperature case:T>T,

ers of u,(t) becomes an expansion bothdp,(t) and inﬁz 1 1+Q.D+P.
[or equivalently in 17 = (u,/B)"], because we are inter- rn= Mot s, 1+Q.D duat), (510
ested in studying what happens for large times and near the
Kauzmann temperaturg,, i.e., for small values obu,(t) ~
and for small values ofi, (or large values of’). In the fy Kty =K.+ KePo ——Suy(t), (5.11
andg, written in the Appendix we leave the notation without (1+Q..D)(mg+ us)
the overbar meaning that an expansion for long times, i.e., an
expansion indu,(t), or an expansion im,, has still to be _ P..D
done, depending on the kind of approximation that we need. my(t)=m;— = —— Suy(t),
For the sake of clarity we repeat here the expansioh (of KJ(1+ QD) (mo+ 1) 51
in the aging regime: (512
o=t Suy(t), T =T =72V e 5 py—p,+ i
2 - M2 2 ’ -1 — . . =Fg —
M2 (1+Q..D)(mo+ uy)
i i : J2(My+ wp) (BW+T/2
The following exact relations hold: «|1+0.D-pP.+ ( o_Mz_)( ) Sun(t).
] 2wA(w+ T/2)
Omgu1=—1-LQK, dpui=—3QK. (5.4 (513

) ) For the terms containing w4, from Eq.(3.35 we see that in
We stress thaty, ug anddpy, uy are still functions ofu,, this dynamic regime
throughQ and K, and that they can thus be expanded in
powers of Su,, leading to corrections to thé, and gy. JQ. T 1+Q.D+P.
Since in the end they will appear only in the combinations Fpqi= == >
I a1+ 2MyFp ey ANA A, sy — 2119, uq We just give the Mo+uz (1+QxD)

expressions of these combinations:

SpptO(Sp3). (5.1

In [3] equations of motion for simpler models were ob-
_ tained. Our present model share the basic attributes that are
Imy M1+ 2My I pt1 = = (1+QD) needed to get those equations, namely, the possibility of
writing the transition probability(3.1) of the Monte Carlo
=—(1+ = . . . LI
(1+Q-D)=01QuD, (5.9 dynamics as the product of two Gaussian probability distri-
butions(3.3), functions, respectively, of the energy variation
5.6 X and of the variationy of the magnetizationlike quantity
' Eixi .
We thus recall here the following equations holding for
where the equal time correlation functions:

L
amlﬂl_zjamzﬂlz -1,
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d _ _ 1 at+b-2
ﬁcab(t-t):jW(BX)[ya(X)yb(xHAy(—H—z)

2

Jd
+ 2 —[Ya(¥)Cep(t,1)

c=1 amc

+%(X)Cca(tvt)]] p(X| ml,mz)dX,

a,b=1,2, (5.15

where[recalling Eqs(3.2) and(3.5) and using Eqs(3.6) and
(4.9]

_ X—X X
ya(x)= — 2T =(4FM1—M1T—e)+owi>,
(5.19

my—ma+u? K

— 2 —_—
ya2(X)= E[XJF Hy1(x)], (5.17

_ A%
X=—F—=4T,l,

5 (5.18

AZ(my—m,) 5
Ay=——5—3=8(My+pu )T +O(T ). (5.19
M= M+ p

Expanding the integralgW(8x)Ya(X)ys(X)p(x|m;,m,)dx
and A, fW(Bx)p(x|m;,m,)dx up to orderY, Egs.(5.15
become

. 1—2r+4r?
Cn(t,t)=8[mo+,uz(t)]T(t)(1—T Y(t)
+2fl(t)cll(tvt)+291(t)C12(t!t)! (520)
. 1—2r+4r?
Cao(t,t) =16my(t)[ Mg+ Mz(t)]r(t)( 1- T)Y(t)
+ (1) Cpa(t,0) +[F1(1) +92(1) JCo(t,1)
+g1(1) Coalt,1), (5.21

Cont, 1) =32my () mg+ uo(1) T (1)

1—2r+4r?
I'(t)

+2f,5(1) Coalt,t) +205(1) Cont1).

X|1- )Y(t)+32[mo+,u,2(t)]2Y(t)

(5.22

The functionsf,, g4, f,, andg, are given in the Appendix.

PHYSICAL REVIEW B4 011508

study the dynamics of correlation and response functions for
times longer tharty, when the system approaches equilib-
rium.

1. Dynamics in the aging regime
In the aging regime, for temperature just above the Kauz-

mann temperaturd,, we can neglecju, with respect to
Ou(t). This means that in expressiofis8—(5.13 we have

to put u, equal to zero everywhere, including the constants
Q.., P., and K., [defined, respectively, in Eqg2.24),
(2.25, and(3.39], and we can writeSu,(t) = wo(t).

To find the solutions to Eq95.20—(5.22 we can first
perform an adiabatic expansion neglecting the time deriva-
tives of the correlation functions. Indeed, to first order of
approximation C,,, is proportional to u,: they are of
O(dr,Y), negligible with respect to the right hand side
terms. We then compute the second order corrections. The
solutions for the cas&>T,, in the aging regime with neg-

ligible ;2 andr proportional tou,(t), turn out to be

Cu(t,)=

1 MyQ;D 1
~1+0.D m°+“2(t)[1_ 1+QxD} +O(F)

+O(M§(t))}, (5.23

Cot,t)= 2my(t)mg+ wo(t)

1
1+Q.D

meQ,D

X 2m1(t)( 1- m) —myQ..D |+ 0O

2

(5.29

+ow§<t>>],

1
Coit,t)= m[ 4my(t)?mo+ pa(t)

% 4m1(t)2(1— {nfglg)—4mom1QmD}
1 2
+0| 5| +OW3(t)]. (5.29

To get these expressions it is enough to keep,ing;, f,,
and g, [defined in Eqgs.(A13)—(A16)] only terms up to
o(Y).

Once we have the equal time solutions we can solve the
equations for the two-time functions. Always following the
approach of 3] we get the equations

Due to the complicated form of the equations we are not able
to find solutions valid at every time. We are obliged to find d;Cap(t,t")=fa()Cyp(t,t")+ga(1)Cop(t,t’), a,b=1,2,

approximate solutions valid on given time scales. First we

(5.26

will study the solutions in the aging regime, for times that

are long but not longer than some given time sctgleafter

wheref, andg, are defined in EqgA13)—(A16). We intro-

which the system begins to thermalize. Afterward we will duce the function
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2m,g; f,—2m,f, To the leading order the two correlation functions above are

T — connected ta&C,; andC,, in the following way:
0,—2m;Q; 9192_2mlgl 2 2 g way

fi+

Cop(t,t")=2my(t)Cyy(t,t"), b=1,2. (5.30

2DQP
=—4Y1(1+QD)I'~|1+QD~ 0 - . . . . .
1+QD Defining the time evolution function for the considered time
DP(1+QD) 1 -, scale sector as
v(1+P+QD) r (5.2

E(T)Eexp(—j ”f(t)dt), (5.31)
. 0

wherem, is obtained from Eq(3.9) as

the solution of Eq(5.29 comes out to be

Cup(t,t")=Cyp(t’,t") T +0(u1Y).  (5.32

My=4u, YT —4u,Y (1-3r+4r2)=0(u,Y)

and is negligible with respect to the leading orders.
The decoupled equations f@r;; andC,, are, in this no-
tation, Following the approach df3] we also derive the response
5 function. Neglecting the terms @(Y?) (calledswitch terms
0 Cop(t,t")=1(1)Cyp(t,t"), b=1,2. (5.29 in [3]) they are

Gu(t,th)= _,BJ’ dy;dy, W' (BX)yIp(Y1,Y2lmy,my) = _EJ dxW (Bx)[y1(x)?+ AyTp(x|my,my)

, oo AYT 2Y
=—Bf dXW(BX)Ayp(lel.mz)+O(M2Y)=T—?+0(M2Y), (5.33

2 _ JO
Glz(tvﬁ):_ﬂf dyld)’zW’(ﬁX)ylyzp(h1Y2|m1am2):_Bﬁf dxW (BX){xy:1(X)+H[y1(x)*+ AT} p(x|my,my)

ﬁ M2 8m1 4le
=—2ﬁ§f dXW (BX)A,p(x|my,my) + 0 FY = YT = =2+ 0(,Y), (5.34)

Gt t")= _,BI dy,dy,W' (BX)Y5p(Y1,Y2lmy,my)

_ 4 2 I T12r\, 2 _ 1 2
——B@f dxW' (Bx){x*+ 2Hxy;(X) + HTy,(X) +Ay]}p(><lm1,mz)——4ﬁﬁf dxW' (Bx)(x

+F2A,)p(x/my,my)+O %Y
16m? 8m7Y )
=T S~ 32X M Oz, (5.39

The equations describing the evolutiortiof the response to TED by means of the ratio between the derivative with re-
a perturbation at’ have the same shape as those for thespect to the initial timealso called the “waiting” time t’ of

correlation functiong5.26). The solutions are then the correlation functiorC,, and the response functia®,; :
Gp(t, 1) =G(t’ t’)ﬁ(t,) (5.36 dp Cqq(t,t")
1 = il - . " t’ 11 ’
2 i h(t) TED(t,t)= —— . (5.37)
Gu(t,t")

With these results we can generalize the fluctuation-
dissipation theorem defining another effective temperaturdo compute it we need
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ht") h(t') response functions are different. Whent, the equilibrium
Iy Cax(t,t") = (9 Cpa(t' 1)) —— — (1) == Cay(t',t") value u, of the variableu, is no longer negligible with
h(t) h(t) respect to its time dependent pajk,(t) (which eventually
h(t)) goes to zero as—). We are in a regime whene=0 (T,
=~ —F(t")=—=Cyy(t',t") =T). In the solution of Eqs(5.20—(5.22 this means that
h(t) all the terms ofO(YrI'/u,)=0(6u,Y) are now subdomi-
— Y (t nant with respect to those &@f(YT") and ofO(Y). To solve
- (t) Egs.(5.20—(5.22 we use the adiabatic expansion, as in the
XA[1+Q.D+ QD u,(t ) (t' previous case.
1+Q QuBpz(t)JI(T) __The solutions for very large time, with finite though small
+O(1)}1+(13 5 Mo and a vanishing, are
. . Cut)= kU oo
meQ;D | [h(t") Wb 170D+ P 11y
X[ mg+ wa(t) 1—m W o
- =T byt e Sl
: R h(t') = 170.D+p, (LT P=) T Caau, Sua(V),
=—4Y (t"){[mo+ u(t") ]I (t )+0(1)}F(—t)- (5.40
% ot )= Cog(tt)= o2V [ o 2P| +eppr
Eventually we get 12n YT 1+QD+P T J 12r
. 1 Mot om—2-p, |+ Sus(t
Te (t,t")=T(t")|1+0 m +O(/.L2(t')2) _1+roD+Poc my j o 012,5,41.2 Ho(1),
5.4
=Teo(t), (5.39 (549
Mo+ uo(t) 2

L
whereT, was first introduced in Sec. Il and later on derived Coo(t,t)= 4m1(t)2+ 2(mg+ ,u,z(t))-l-4?P

) +QD+
in Eq. (4.3. We recall thatl' "'« u]. As we see here the 1+Qb+P

above defined fluctuation-dissipation effective temperature + Coo,f
coincides, on the time scale of our interest, with the effective

temperaturel, that we got by the quasistatic approach only my+ ;2

if 1/T" is negligible with respect t@,. This is true only ify, = 1+Q.D+P.

the exponent of the generalized VFTH la#.18), is greater

than 1. Otherwise the last correction is no longer subleading:

already fory=1, TEP—T, only in the infinite time limit, X
i.e., for time scales longer than those of the considered aging

regime. As already discussed in Sec. lll, where we presented (5.42
the results of the dynamics of the one-time observables, the

value of the exponeny discriminates between different re-  H€re
gimes. Fory>1 an out of equilibrium thermodynamics can 3721202
be built in terms of a single additional effective parameter Ciy,=— Avimot a(HITKTQ (1+P),

(the effective temperaturg,). For y<1, T, alone does not ’ ©2(t)(1+DQ)(1+P+DQ)?

give consistent results in the generalization of the equilib- (5.43
rium properties to the nonequilibrium case and in order to e

cure this inconsistency more effective parameters are prob- _ 4y[mo+ u2(1)]°KIQ

ably needed. This discrepancy was clear, from Sec. Ill, for 12r— wo(1+DQ)(1+P+DQ)?

the regimes below, where already the one-time variables

had different behaviors depending on the valueydbeing
greater, equal to, or less than 1. FbrT, there was not
such a difference at the one-time observable level. As we just

L2

45%"‘ 2(m0+ ;2) + 4? POc + 022,5/1,251&2(‘:) .

x| (1+ P)(1+RLQ)+RJQ( P%—ml”,

saw, it shows up, instead, at the level of two-time observ- (544
ables. _ 16yImot pa(]1°KIQ ( L )
2. Approach to equilibrium Cor= wo(t)(1+DQ)(1+P+DQ)? J

For times longer than the aging regime time scales the X (1+KLQ), (5.45

terms that are relevant in Eq&.20—(5.22 for the correla-
tion functions and in the expressio(s.34—(5.36 for the  and
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— P;DQ..+Q:D(1+P,) 8yDQ.P.(1+ Pw)(mo+;2)
LHPa= (Mot 12— 75 750 N » 2
» ® H1o(1+DQ.,)

C11.6u,= m‘ ,  (5.49

(Mot pp){Palmy +(L/J)(1+DQ.) ]+ DQy(my — LIJ)}
1+P,+DQ.

2 —
c =——  {Im-=P,|1+—

+4)/DP3<,[(1+ P,)(1+K,.LQ.)+K.,JQ.,(L/J Pw—ml)]] , (5.47

JK..p2(14DQ..)2

L2 4m,P..D

=< +pp)+2mi+ 2P
C22,1, 1+DQm+Pm|2(m0 M2)+2mi+2— P, R.J(1+DQ.)

- (Mo+ o) {P1[2mM2+ 2L %/ J%(P.,— 1) + Mo+ wy]+ DQq(2M2+ 212/ %P, + Mg+ )}
1+P.,+DQ..

B 8yDPw(El—L/JPw)(1+RmLQw)) (5.49

JKouo(1+DQ,)2

where Q; is defined in Eq.(5.7) and P4 in the first order my(t)—P(t)L/J
coefficient ofP in its expansion indu, [see Eq(5.13)]. Ca(tt)=2——""p5——
To find the solutions to first order approximation in
Suo(t) it is enough to keep in each of EqA13)—(A16)
only terms up taO(rY) andO(rY/(I"u,)). Whether or not

Cyq(t,t"), (5.50

2my(t)2+2P(t)L2/ 32+ my+ uo(t)

the terms ofO(rY) or those of O(rY/(I'"u,)), with n Coot 1) = Co(tt)).
=1,2,..., are thanost important depends on the value of 2ALt) my(t)—P(t)L/J i2tt)
the VFTH exponenty: if y>1, O(r'Y/(T u,))<O(rY) for (5.5

large times; they are of the same orderjat1; while if
1/2<y<1 O(rY/(I' uy))>O(rY). Furthermore, ify<1/2 5
terms of ordelO(r Y/(I'?u,)) will also be more important or Using the time evolution functioh [Eq. (5.31)] for the
as important as those @(Y). For yet smaller values of  time scale sector considered, the solution of E5.29
more and more terms of the kind/'/(I'"u,) will be much  comes out to be
greater tharO(rY) in the aging regime.
As t—oo the solutions(5.40—(5.42 coincide with the
elements of the matrix2.26), the inverse of the Hessian of h(t))
the free energy of the model, i.e., they coincide with the Cip(t,t")=Cyqp(t',t") =——+0(u1Y), b=1,2.
average squared fluctuations at equilibrium. h(t)
Once we have the equal time solutions we can solve Egs. (5.52
(5.26) for the two-time functions.
The functionf is now . _ —
In the leading terms of our expansion #u,(t) and u, the
) expressions for thé’s and g’s are given, for the cas&
2m; g, fo,—2m,f, >T,, by Egs.(A13)—(A16).
9,—2myg; 2tg,—2myo; Using Egs.(5.40, (5.41), and(5.49, we get

1+QD+P r2
—4Y(F—1)T—4er7(mo+,u«z)—

T=f,+

2 1+P, _
(1+P) Cu(tt’)= m[mﬁ p2t+O(Sua(1))]
YT'r
+0O| — (5.49 ¢
H2 XeXp{ —4f Y (t")[T(t")—1]
t!
The decoupled equations f@;(t,t’) andC,(t,t’) are al- " "
ways Eq.(5.29. From them we can compute,,(t,t’') and X1+Q(t )D+P(t )dtrr , (5.53
Coi(t,t") as follows: 1+P(t")
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2PxL/J—Hl[ o O(a)] and
———(M
1+Q.D+p, LMo H2 T ROk a;=1+3DQ(1-2P)+(DQ)X3-4P)+(DQ)?,

(5.57

Cpt,t')=

XeX% _4£tY(t”)[F(t//)_1]
a,=4(1+DQ)[KLQ(1+P)-DQ(1-P)], (5.58

><1+Q(t )D+ P(t )dt”]. 554

1+P(t") a3E%Q(H—DQ—mO)(l%—RLQ)(S—12r+12rz).

(5.59
B. Low temperature case:T<T,

Our approach also allows us to study the regime below In the asymptotic limit these solutions do not coincide
the Kauzmann temperatufig. In this last case, though, we with Egs. (5.40—(5.42. That means that they are also
have qualitatively different behaviors depending on the valuelifferent from the static limit of the correlation functions
of y, i.e., on the relative weights @f; andu,. We describe found in Sec. Il from the inverse of the Hessian matrix
here the case>1, whereu;<u, [see Eq.3.35]. Fory  (2.26. This is due to the fact that the static limit does
>1, according to the results shown in Sec. IV, it is indeednot take into account the constrai2t9) on the configuration
not necessary to introduce any effective thermodynamic paspace. Above the Kauzmann temperature the dynamics
rameter other than the effective temperature, and the analysiever reaches this constraint so that, even if it is slowed
can be carried out in a way similar to that of the previousdown by the existence of the constraint, it arrives the
case(Sec. VA. In expanding the time dependent coeffi- same static results. But as soon as we perform the dynamics
cients ofC,y, in the equations of motioff; , andg; , given  atT, or below it, the asymptotic regime will never coincide
in Egs.(A13)—(A16)] we have now to take into account that with the equilibrium one. The system will be stuck forever
r never vanishes, while on the contrary the asymptotic valuén one ergodic component of the phase space, artificially
of u,(t), denoted byu,, is zero. The leading terms fig and ~ Created by imposing the constraint in the dynamics of
g« (k=0,1,2,3) are in this case those O(YI'/u,). The the model, but_ not in the Ham|lt.on|an. The |mplem_entat|on
subleading terms are those of ordeY and['u,Y (coming  ©f the constraint in the dynamics makes the variance
always withr as a multiplicative factor All these terms are Of the distribution of the random variables giving the
diverging terms, in the limit—c, and hence terms @(1) ~ updating of Monte Carlo dynami¢see Eq(3.6)] diverging,
are now negligible with respect to them. They lead to cor-WhenT<To. The divergent factor aA? is the quantityl™(t)
rections to the FDR of order &< .. [Eq. (3.7)], appearing in the equations of motion so far dis-

The equations of motions for the equal time correlationcussed. Going from a regime where the contributions of
functions are identical to Eq$5.20—(5.22. What change ©O(1) are relevant T>T,) to another where they are not
are the time dependent coefficierfts, andg, , andr=r,, ~ €ven subleading, with respect @(I'), we lose the static
+0(8uy(t)), wherer., is defined in Eq(3.40. limit. . .

Solutions to these equations are obtained, as before, in the We find the solutions of Eq$5.26 for the two-time cor-

adiabatic approximation and expanding all the functions irffélation functions by following exactly the approach shown
powers of (1), in the preceding section, with the following expressions for

Cap()=[2my(1)]3+P2 the functionsm, andf:

my=4T u,Y +O(udY), 5.6
1 N . moQ;D 1 M1 (n3Y) (5.60
X1 15a.p| Mt W 17175 5 - QDP
f=—4YI‘(1+QD)—8Ym(l—3r+2r2)+0(,u2¥),
m r+aor?
__O &+yr5a28b2a3 +O(,U/§(t)), (561)
'l (1+Q.D)* o . . .
* The two-time correlation functions turn out to be
(5.595
o [2my(t)Pt
Cultt)="17q.p
whereQ; is the coefficierlof the first order expan_sioan *
given in Eq. (5.8, with u,=0 in this case andv—w.,, ( mleD) }
= X | Mo+ t")|1——F-—=|+0 t’
E\/J2m0+(D/KOC)2+T2/4, 0 /'LZ( ) 1+Q00D (/-Ll( ))
t
Q- J%my(3w.,+ T/2) X 4] [1+Q(t")D]Y (t")I'(t")dt";,
Q1= =3P, v
(1+Q.D)mo| 2w2(w.,,+T/2)
(5.56 b=1,2, (5.62
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Cop(t,t")=2[my(t)]° 1Cyp(t,t"), b=1,2. (5.63

For the response functions, from Ed5.34—(5.36) we
get

4YT 2Y(1-2r)? . 8Y(I' )2

Gy (t,tT)= ,
11( ) K Te
(5.64
8m, YT  4m,Y(1—-2r)%2 16m;Y (T uq)?
Gu(tth)= i _ 1 (~ ) n 1Y (T uq)
K K Te
16rT Y
Ml (5.69

K

Gt~ 16m2YT - 8m3Y (1—2r)? ) 32m2Y (T pq)?
200K K Te

64m,rTu,Y 8my(1—2r)2Y
" 1R,U«1 n ol _ )

: (5.66

where this time the contributior$u; and ([ x4)? are both
of orderY and we take them into account.

The two-time behavior of the response functions is as in

Eq. (5.36) with T given by Eq.(5.61).
The last thing that we need, before ComputTrfg? , is the
derivative

3, Cqy(t,t’ —wa Cpq(t/ ) —F(t’ F](t,)c t,t/
v Ca(t, )_E(t) b Cpa(t’ ") —1f( )E(t) 1(t,t")
1 myQ,D
N (1rep mﬁ#z(”(“ﬁ”

X[1+Q(t")D]I'(t")

X exp[ 4ft [1+Q(t)D]Y (t")r(t")dt"} .
t/
(5.67)

It follows that

1+0

TEP(LE)=Te(t") .

+0(M§+V)}:T§D(t').
(5.68

In this caseO(1/M")=0(u) is always smaller tha®(u,),
becausey>1: in the long time regimertP(t) coincides
with T(t).

C. Effective temperature from the fluctuation formula
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in a cooling-heating setup caused by a change in the ield
at fixed time(also called thdluctuation susceptibility In a
cooling experiment the whole susceptibility can, indeed, be
written as[3]

omy omy omy dTe (5.69
Xab= -7 | — .
Mol dHplpy -~ dTelry, dHbly
:ama _&ma dTe +ama T
Mol 0Telr, Holr, Telr, dHolg
(5.70
= x a5 (1) + XS + X" (). (5.70)

Here we are considering an aging situation, so only the
first term is relevant. We can reasonably assume that

xHue(t) can take the form

;ltlmjm(t)_ ﬂma :N<5ma(t)5mb(t)>fast
IHp |, T
N<5ma(t)5mb(t)>slow
W0

(5.72

where (- - - Ytasysiow IS the average, respectively, over fast
and slow processes. The fast ones are governed by the heat-
bath temperature, and the slow ones by some effective tem-
perature T depending on the time scale Through
xHue(t) one can look at the connection between the fluctua-
tion effective temperatur@{"", introduced in[2], and the
other effective temperatures so far defined. To work it out we
start from

am,

n= Ml _ (omy(t)omy(t))  Cyy(t,1)
V= T -

(™ (™
(5.73

fluct

X11

Using the following expression fam,, obtained from Eg.

(3.14:

L D
my (T H)=— -+ — ,
I IKMy(6T,H),ma(tT,H);T)
(5.74
the fluctuation susceptibility!{"’ turns out to be
amy 1
==—————+0(u). (5.79

H |, K(1+QD)

A self-consistent picture with an effective temperatureHere we are neglecting terms likgw, /0H andduw,/dH, of
should also imply that the same effective temperature alsorder u; or higher(we deal with the regimegT>T,,V y]
governs other physical variables. From the expression ond[T<T,,y>1] whereu;<u,). Taking the expressions
m(t;T) as a function ofH we can compute the quantity (5.23 and(5.55 we see that in both dynamic regimes that
xM=(am,/oH)|+ that is the contribution to susceptibility we are considering the leading term®f, can be written as

011508-20



EFFECTIVE TEMPERATURES IN AN EXACTLY ... PHYSICAL REVIEW B4 011508

Mo+ rations having a Boltzmann-Gibbs form with a factoi 1/
Cu(t,t)= WJFO(ME/ , (5.76  instead of 1T in front of the Hamiltonian.
Generally speaking, in order to recast the out of equilib-
and this leads to rium dynamics into a thermodynamic frame, the history of a
system that is far from equilibrium can be expressed by more
T =R (mg+ up) +0(d), (5.77  than one effective parameter. This happens when more than

one time scale is involved in the dynamic evolution of a

thus coinciding with Eq(4.3) to the order of our interest, System. In those cases to every time sector will correspond
i.e.,O(u,). At higher orders there will be nonuniversalities. an effective temperatuf@5]. Moreover, in a given time sec-
If y<1 the terms 0fO(x}) become dominant with respect tOr, the number of effective parameters needed to make such

to O(,), leading to the same situation that we had TgP @ translation into a thermodynamic viewpoint can, in prin'-
in Eq. (5.39, namely, the thermodynamic description doesCiple, be equal to the number of relevant observables consid-
not lead to a unique effective parameter. ered in every time sector. For certain dynamic regimes, how-

ever, determined by the temperature and by the VFTH
exponenty, the effective parameters pertaining to processes
having the same time scale become equal to each other in

In this paper we consider a model that has all the basiéme, for large times. S _
properties of a fragile glass, built by processes evolving on AS we saw in Sec. IV, in the dynamic regimes reported in
two well separated time scales, representing ghand 3 Sec. lll, when the distance(t) from equilibrium is much
processes taking place in real glassy materials. Also, themaller than the distance from the constrajpj(t), the ef-
model is provided with a constraint applied to the harmonicfective temperature alone is enough for a complete thermo-
oscillator dynamics, i.e., to the slow process dynamics, irflynamic description of the dominant physical phenomena
order to reproduce the behavior of a good glass former. ~ (the effective fieldHe=H), while in the regimes where

Introducing a facilitated Monte Carlo dynamigk9,23,3  #a(t) is no longer negligible with respect jo,(t) the effec-
and developing it analytically, thus having the opportunity oftive field He(t) is also needed to map the dynamics on long
probing it in more detail than in a numerical study, we foundtime scales into a thermodynamic frame. From the time be-
equations of motion that are in all respects those typical ohavior of the slowly varying observables in the aging regime
glass relaxation. By means of the constrained dynamics w&e found in Sec. IV a VFTH relaxation time dependence on
identified the Kauzmann temperatuFg as the one at which temperature above the Kauzmann transition and we derived
the constraint is reached, asymptotica”y, for the first time inthe Adam-Gibbs relation between the relaxation time and the
a cooling experiment from high temperature. There weconfigurational entropy, which we can explicitly compute for
showed how the real thermodynamic phase transitid, ~ our model.
taking place due to the breaking of ergodicity in the land- We have also been able to study the dynamics of the
scape of our model, rich in degenerate minima, is charactesystem quenched to a temperature below the Kauzmann tem-
ized. A detailed study of the dynamics was performed botHerature. At long, finite timé we see that it is possible to
above and below the Kauzmann temperature and for arbintroduce an instantaneous relaxation time depending on the
trary values of the exponentgeneralizing the typical VFTH heat-bath temperature in a nontrivial way but expres§ible in
behavior, usually assumed for glasses, #g—=exgA/(T f[erms of the effective temperature. What we got in this way
—To)]”. The dynamics in the aging regime of both one-timeiS actually a VFTH law v_vhere the heat-bath temperature has
and two-time variables was carefully analyzed, including thedeen substituted by a time dependent effective temperature
corrections to this regime, relevant at shorter times. To(t) and its asymptotic valud . takes the place of the

The decoupling of time scales is fundamental for a genKauzmann temperatufg,. Such a relation for the time scale
eralization of equilibrium thermodynamics to systems farof the aging dynamics below, could hold very well in
from equilibrium. We tested on our exactly solvable modelmore general systems.
whether or not the generalized approach holds, involving one At equilibrium the heat-bath temperature enters many re-
extra variable, namely, the effective temperature, in the delations that can be rigorously proved and connected to each
scription of the nonequilibrium thermodynamics. By “effec- other in the framework of thermodynamics. Out of equilib-
tive temperature” we mean a thermodynamic quantity thatium we miss first principles to start with in the generaliza-
would be the temperature of a system at equilibrium visitingtion of such a construction. We do not have any guaranty, for
with the same frequency the same states that the real—out ofstance, that a given definition of effective temperature,
equilibrium—system at temperatufevisits on a given time made by generalizing a given equilibrium formula, will
scale during its dynamics. This kind of parameter appears imatch any other definition coming from the generalization of
the thermodynamic functions together with the heat-batranother equilibrium formula. At equilibrium the heat-bath
temperature and the fields coupled to the system’s obsertemperature enters the Boltzmann-Gibbs measure, the laws
ables and is coupled to the configurational entropy. In ounf thermodynamics, the fluctuation-dissipation theorem, and
work it was derived as a function of timéor given values of  different Maxwell relations. However, out of equilibrium we
the heat-bath temperature and of all the other parameters bave to check whether a single definition of effective tem-
the model such that the evolving system out of equilibrium perature is compatible with any other. Since all effective
can be characterized by a probability measure of the configuemperatures have definite limits for long times, in our model

VI. CONCLUSIONS
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we verify that these limits are identicalvhich happens al- APPENDIX: MONTE CARLO INTEGRALS
ways and that the leading approaches to these limits coin- . .
cide (which happens only foy>1). When that works out nge we prgsent the expressions of the integrals that. we
we find a way to completely recast the long time domain ofUS€ in computing the dynamics of the observables following
the out of equilibrium dynamics into the language of thermo-the Monte Carlo method explained in Sec. Il. We recall that
dynamics in a given time sector, of course, well separated defined in Eq(3.2), is the energy difference between the
from the other time sectors of the glassy dynamics. Thigurrent configuration of the system and the one proposed for
behavior may occur if the aging is so slow that the systenthe updating. The variable [defined in Eq.(3.22] is the

has time enough to clearly demonstrate an effective temperalistance of the effective temperatufg from the heat-bath
ture before going to a lower value of it. temperaturéwhich is also the equilibrium value df, in the

With this aim we also rederived the effective temperaturedynamic regime above the Kauzmann temperatutiest we
from the fluctuation-dissipation ratio and from the fluctuationdefine the abbreviation
formula connecting the susceptibility with the fluctuations of
the slow variables of the system. In Sec. V we showed that e '(1-r)
the effective temperatur@." defined as the fluctuation- Y T (A1)
dissipation ratio tends to the effective temperafly¢hat we ol
obtained by the quasistatic approach in Sec. IV onlyJfis
negligible with respect t@,. This is true ify is greater than
1. Otherwise the corrections of ordg# are no longer sub-
leading and significantly change the time evolutiorTgP .
Already for y=1, TEP—T, only in the infinite time limit, J' dxW(BX)p(x|my,mz) =Y
i.e., for time scales longer than those of the aging regime
considered. Even above the Kauzmann temperature the value 3
of the exponenty discriminates between different regimes. + ——=(1—4r+16r°—24r3
For y>1 an out of equilibrium thermodynamics can be built re
in terms of the single additional effective paramelgr For
y=<1, T, alone does not give consistent results in the gener- +16r+0
alization of the equilibrium properties to the nonequilibrium
case. In those cases one also needs an effective Higld
However, no universal behavior for tAg, H, combination =~ Then we give the behavior of the derivative with respect to
has been found. Even within the solvable model of this patime of the energy
per, the applicability of the thermodynamic picture depends
on how fast the relaxation time diverges.

We already mentioned that in the cage 1, for tempera- J dxW(BX)xp(x|my, m)
tures above the Kauzmann temperature, both the statics and
the dynamics in the aging regime can be described by Vogel-
Fulcher-Tammann-Hesse laws; see E@s20 and (4.22.
Notice that these laws are not identical, the static one diverg-
ing more strongly, due to a larger prefactor of the divergent 1
term in the exponent. We also notice that in this situation —32r3+ 1&4)+O<EH (A3)
v>1 the aging(well) below the Kauzmann temperature can
be described in a form very similar to the aging above it. For, nd of the variablen, [defined in Eq(2.3)]

which is the leading term of the acceptance ratio of the
Monte Carlo dynamics given by

1—2r +4r?2

==

3 (A2)

3(1-2r+2r? 15
1- ———————+—(3—-12r + 282
41?

=—4rT.Y T

. o . . - a
this reason it is meaningful to compare experiments in those

two aging regimes, and, in particular, to test whether the _

decay of measurable quantities, like the energy or the mag- f dxW(Bx)y1(x)p(x|mq,m;)

netization, has a common temporal law in the full aging re-

gime. 1
Finally we checked the consistency of the widely men- =4pY f) :

tioned thermodynamic picture by writing the first and second

laws USing the effective temperature, and we verified that |in Sec. V we Compute the correlation and the response func-

can also be computed from the generalization of the Maxwellions. In order to find their time dependence we need the

relation at equilibrium giving the heat-bath temperature agollowing derivatives. In these formulas we show the deriva-

the derivative of internal energy with respect to the entropyives with respect tan, andm,, taken as independent vari-

[see Eq(4.12)]. We found the same results we got from the gpes; of the effective temperatufg, the variabler, and the

I'—(1-3r+4r)+0 (A4)

other derivations in the same validity limits. leading term of the Monte Carlo acceptance rafio They
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Te -
o~ K(P+1), (AB)

ar 21—3r+2r2 PL A7
gy % motm, \F3T M) (A7)
gr  1-3r+2r? 1 A8
oMy Mot g ), (A8)
and
N ™Y gyt 2 (pL
am; ,U«z( ) Mot ua\  J M
(A9)
i —Y[ Y 2r+1)- — 2 (p+1)|. (A10)
am, 22 Mo+ w2 '

Furthermore, we show the extensive computation of the

coefficients of Eqs(5.20—(5.22 and (5.26 for the dynam-
ics of the two-time observables:

fozamlf dxW(Bx)p(x|my,my)

Y
z—mly—[ZF 1+4r—8r2+ —(13 56r

M2

+1362—-1603+80r%) |+ 0 5
pol

Y L 3—20r +40r2—32r3

- P-—my||1-2r+
mo+M2 J F

Y

+0 ) (A11)

gozamzf dxW(Bx)p(x|my,my)

hd 2T —1+4r—8r2+ 3 13— 56r + 1362
_72,“2 ' ' ﬁ(

1
—160r3+80r%) |+ 0 -Y (P+1)
wol'? Mo+ w2
3—20r +40r2—32r3
X|1—2r+ T +0 =1 (A12)
flf&mlf dXW(BX)y1(X)p(x|my,my)
I'u Y
~—4m1yY—[2F 3+6r-8r2]+0 ”1)
M2
I'py
_16Ymo+//«2 jp_ml>
+4Y O pa (T = 143r —4r) + O(uY), (AL3)
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glzamzj dXW(BX)y1(X) p(x|my,my)

Yy

r
~ 29y o~ 31 6r—8r2]+ O —2
M2 M2

—-8Y

— (P+1)+4Y 9y pug (T —1+3r —4r?)
Mo+ up

O(u1Y), (A14)

fo= 3m1f dXW(BX)Y2(X) p(x|my,my)

L
=2m;f,+ = f3+ 16Yr —

P
J1+op TOkY),

(A15)
9=, J dXW(BX)y,(x)p(x|my ,my)

2
=2mg.+ = g3+8Yr +0(u1Y), (A16)

P
1+QD
fo= i, | WBOXPOm )

r 3
:4mlyYTeM— 2I'—5+ 12—122—F(3+ 9r —54r2
2

+1403-160%+80r%) |+ 0O

,U«ZFZ

L
—8YK( P— ml)[1—3r+4r2

3
- F(1—5r+12rz—14r3+8r4)

Y
+0| (A17)

45=m, | GXWBX)XPOM, M)
r
o~ —szTe—[2F—5+ 12r—12r2
M2
3
—p(3+or — 542+ 140r3—160r4+80r5)}

+0

—4YK(P+1)
pol

3
X|1-3r+2r2— F(1—5r+12rz—14r3+8r4)}

Y
+0| —

=1k (A18)
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All partial derivatives with respect ton; have been com-
puted keepingn, fixed and vice versa. At this stage time has

PHYSICAL REVIEW E 64 011508

the formulas we already performed such an expansion,

breaking it atO(Y/(I" u,)), which is more than sufficiently

not yet been introduced. Introducing it, we are able to makeefined to derive the dynamics of the correlation and re-

an expansion of EqgA11)—(A18) in powers of u,(t). In

sponse functions in all the regimes of our interest.
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