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Effective temperatures in an exactly solvable model for a fragile glass
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A model glass with facilitated dynamics is considered with one type of fast process (b type! and one type
of slow process (a type!. On time scales where the fast processes are in equilibrium, the slow ones ha
dynamics that resembles that of facilitated spin models. The main features are the occurrence of a Kau
transition, a Vogel-Fulcher-Tammann-Hesse behavior for the relaxation time, an Adam-Gibbs relation be
relaxation time and configurational entropy, and an aging regime. The model is such that its statics is s
and its~Monte Carlo type! dynamics is exactly solvable. The dynamics has been studied both on the appr
to the Kauzmann transition and below it. In certain parameter regimes it is so slow that a quasiequilib
occurs at a time dependent effective temperature. Correlation and response functions are also compu
well as the out of equilibrium fluctuation-dissipation relation, showing the uniqueness of the effective
perature, thus giving support to the rephrasing of the problem within the framework of out of equilibr
thermodynamics.
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I. INTRODUCTION

A glass can be viewed as a liquid in which a huge slow
down of the diffusive motion of the particles has destroy
its ability to flow on experimental time scales. The slowi
down can be expressed through the relaxation time, i.e.,
characteristic time needed to have one interparticle diffus
process of a particle while it is rattling between its neighb
particles, which form a cage around it. This relaxation tim
is proportional to viscosity. Cooling down from the liqui
phase, at some point the system falls out of equilibrium:
slow liquid degrees of freedom are no longer accessible
the relaxation time and the viscosity of the undercooled m
suddenly grow by several orders of magnitude. The temp
ture at which this happens is defined as the glass trans
temperatureTg @1#. At Tg the heat capacity decreases in
clear way going from liquid to glassy phase, and on rehe
ing an abrupt but different change shows up~some universal
behavior in the cooling-heating process was pointed out
one of us@2,3#!. Moreover, discontinuities of this kind occu
also in the compressibility and the thermal expansivity. T
looks similar to a continuous phase transition, even tho
the analogy is not perfect, because of the smeared natu
the discontinuities and because the smaller specific
value occurs below the glass transition, rather than above
would normally occur in mean field phase transitions.

The transition described above is not a true thermo
namic phase transition, but is strictly kinetic in origin:
takes place when the relaxation time becomes longer than
observation time and marks the transition from ergodic
nonergodic behavior. In general the location of this tran
tion, the empirical glass transition temperatureTg , depends
on the cooling rate, or more precisely on the cooling sche
The glass transition temperature is commonly defined as
temperature where the viscosity equals 1013, and the equili-
bration time is of the order of days. It is related to the slow
possible experiments one can realistically do. Cooling
higher rates induces a glass transition at a somewhat la
dynamical glass transition temperature.

The very slow relaxation of nonergodic systems evolv
2001/64~1!/011508~24!/$20.00 64 0115
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toward equilibrium structures on time scales longer than
characteristic time scales of the experiments, depending
the history of the system~e.g., on the phase space region
which the initial conditions are chosen and on the cool
rate!, is the so called regime of aging dynamics@4,5#.

Experimental data for the viscosity pattern of glass for
ing liquids are often fitted to a Vogel-Fulcher-Tamman
Hesse~VFTH! behavior@6–8#, teq;exp@Ag/(T2T0)

g#, where
the fitting parameterT0 depends on the material and th
range of temperatures in which the fit is performed. T
exponentg is usually set equal to 1, and an argument for t
choice was given by Adam and Gibbs@9#. A correct expla-
nation of this was given by Kirkpatrick, Thirumalai, an
Wolynes@36#, and further quantitative analysis has been
cently presented in Ref.@37#. Their study, however, does no
exclude an exponentg.1, also compatible with data
merely affecting the width of the fitting interval. Analyti
approaches giveg52 in three dimensions@10,38#. Here we
shall considerg as a model parameter, which can be chos
below, equal to, or above unity, and investigate aspects
this standard picture.

Kauzmann@11# pointed out the paradox that the diffe
ence between the liquid entropy and the crystal entropy~i.e.,
the entropy of the most organized state for the system! if
naively extrapolated to zero temperature would beco
negative at some point. To circumvent this unphysical res
he proposed the occurrence of a thermodynamic phase
sition at the temperature~commonly denoted byTK) where
this entropy difference vanishes. Such a thermodyna
transition would be characterized by a discontinuity of t
specific heat and by the exponential divergence of the re
ation time~VFTH for fragile glasses or Arrhenius for stron
ones!. Connected to this last feature is the usual assump
that the fitting parameterT0 of the VFTH law coincides with
the Kauzmann temperatureTK . We note that at this phas
transition the divergence of the relaxation time is not alg
braic in temperature, as happens in ordinary continu
phase transitions, but is exponential, and no susceptib
diverges at the critical point.

The residual entropy, given by the difference between
entropy of the undercooled liquid and the entropy of t
©2001 The American Physical Society08-1
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vibrational modes of the crystal that could in principle
formed, is usually called complexity or configurational e
tropy. According to standard knowledge, the Kauzmann tr
sition should be characterized by a vanishing, or minim
configurational entropy. This prediction is very difficult t
test experimentally, since the relaxation time is too long. T
existence of a Kauzmann transition was nevertheless rece
supported by both analytical and numerical results@12–14#.
The configurational entropy is the entropy determined by
number of states that the system at temperatureTK,T,Tg
can visit.

At a given dynamic critical temperatureTD , generally
greater thanTg , the separation of the time scales of slow (a)
and fast (b) processes starts to increase more rapidly tha
higher temperature. Referring to the phase space, we can
that structures get organized at two levels: some minima
the free energy are separated by very small barriers and
tween themb processes take place; groups of those mini
are contained in bigger basins separated by barriers requ
a much greater free energy variation to be crossed. To m
the system go from a configuration in one of these basin
another configuration in another basin, i.e., to have ana
process, a longer time is needed. The time scale on w
these processes are happening is, however, atTD and below
~but aboveTg) still very short in comparison with the obse
vation time. In a cooling experiment the system is thus s
in thermodynamic equilibrium. Going on with cooling, the
is an increase in depth of the local and global minima
pearing in the thermodynamic potential and correspondin
different metastable and stable states; barriers between
become higher and higher until, at the glass transition te
peratureTg , some states become impossible to reach du
the time scale we set for our system, i.e., the experime
time. The configurational entropy is the observable t
counts the relevant states. As temperature decreases fu
the configurational entropy starts to decrease because
are fewer and fewer states available for the system.
Kauzmann temperature is reached when the system is s
in one state and cannot move to any other, because,
asymptotically and even for short range systems where a
vated processes were present forTK,T,Tg , the free en-
ergy barriers become infinite.

The configurational entropy densitysc is usually con-
nected directly to the relaxation time through the Ada
Gibbs relation@9#: teq;exp(1/sc).

To recapitulate we have been referring to the followi
different regimes for a glass former.

~1! For T.TD the system is in a disordered phase. Diff
sion processes have a very short relaxation time. At v
high temperature the free energy describing the system
only one global equilibrium minimum and on cooling towa
the TD temperature small local minima show up.

~2! Around TD a dynamic transition takes place. Th
phase is still disordered but the number of minima of the f
energy increases and some local minima become dee
a-b bifurcation is qualitatively enhanced. In a simple mo
coupling theory@15# this is the temperatureTmc at which a
static transition is predicted with an algebraically divergi
relaxation time. In thep-spin spin glass model@16,17# this
01150
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corresponds to the dynamic critical temperatureTD at which
the system goes to metastable states of energy higher
the minimum energy. ForTg,T,TD the dynamics ofa
processes has a huge slowing down but the temperatu
high enough to reach equilibrium on the experimental ti
scales.

~3! Around Tg , which depends on the cooling rate, a
other transition takes place. Many other local minima of t
free energy appear and the deepest of them, correspondi
metastable states, become ergodically separated on the
scales of the experiment. ForTK,T,Tg the system has a
very slow aging dynamics between the metastable sta
proceeding by activated processes.

~4! At T5TK a thermodynamic phase transition shows u
with exponentially diverging relaxation time. The free e
ergy barriers between deep local minima increase to infin
and the system gets stuck in one single minimum forev
Ergodicity is broken at any time scale. In thep-spin model
this corresponds to the temperature at which the replica s
metry is broken@18#. The Kauzmann temperatureTK is usu-
ally assumed to coincide with the fitting parameterT0 of the
VFTH law. Below the Kauzmann temperature the syst
evolves only through the configurations belonging to the
godic component of the phase space to which the dynam
brought it during the cooling.

~5! In a cooling experiment that goes belowTK , and in
quenching experiments to a temperature belowTK , the aging
dynamics visits only states with a free energy that is hig
than the one in the static limit. The dynamics behaves a
occurring at a higher temperature.

The exponential divergence of time scale in glasses~as
opposed to the algebraic divergence in standard continu
phase transitions! might induce an asymptotic decoupling o
the time decades. The reasonable assumption can be m
that, in a glassy system that has aged a long timet, all pro-
cesses with equilibration time much less thant are in equi-
librium ~the b processes!, while those evolving on time
scales much larger thant are still quenched, leaving the pro
cesses with time scale of ordert ~i.e., thea processes! as the
only interesting ones. Indeed, this assumption has alre
been tested successfully in models similar to, but even m
idealized than, the one we are going to discuss in the pre
paper. Those models showed a glassy regime with
Arrhenius law~rather than VFTH!, like the harmonic oscil-
lator model@19,3# and the spherical spin model@2,3#. The
asymptotic decoupling of time scales that is the input for
present set of models could be the basis for a generaliza
of equilibrium thermodynamics to systems out of equili
rium @3#. That approach involves systems where one ex
variable is needed to describe the nonequilibrium phys
namely, theeffective temperature. One of our aims will be to
test this picture in an exactly solvable model glass; we s
see that there are domains where it does apply~namely,
when the VFTH exponentg exceeds unity! and where
it does not apply~namely, wheng<1). In this last case
two extra variables will be needed, making compulsory
introduction of aneffective field, in addition to the effective
temperature.

In the present paper we are going to investigate an exa
8-2
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EFFECTIVE TEMPERATURES IN AN EXACTLY . . . PHYSICAL REVIEW E64 011508
solvable model with facilitated dynamics glass that shows
of the features that we recalled above for the much m
complicated real glasses. For other examples of models
with a facilitated dynamics, see Refs.@23,24#. The model is
introduced in Sec. II. It is built by processes evolving on tw
different, well separated time scales, representing thea and
b processes taking place in real glassy materials. In Sec
we introduce the dynamics that we apply to the model a
we show the dynamic behavior in the aging regime. We
implement the dynamics even below the Kauzmann temp
ture, thus getting insight into a regime where few analy
results are known. Even though the physics of our mode
simple, we shall find general aspects of the results by form
lating them in the thermodynamic language. One of the m
important points is that the configurational entropy, whi
we will denote byI, is exactly computable~see Secs. II and
IV ! as a function of the dynamic variables of the model.

From the study of the dynamics~Secs. III and IV! it turns
out that the system relaxes to equilibrium with a charac
istic time that depends on temperature following a gene
ized VFTH law:

teq;expS A

T2T0
D g

. ~1.1!

We will often refer tog as the VFTH exponent.
As we show in Sec. IV, the parameterT0 in the VFTH

law is identified with the Kauzmann temperature, i.e.,
temperature such thatI(T0)[I0 is the minimum of the con-
figurational entropy@and for anyT,T0 I(T)5I0]. More-
over, the specific heat displays a discontinuity atT0; at that
temperature the model thus indicates a real thermodyna
phase transition. In Sec. IV B the Adam-Gibbs relation b
tween relaxation time and configurational entropy density
achieved, in the form

teq;expS N

I2I0
D g

. ~1.2!

The study of single-time variable dynamics, in Sec. I
and of two-time variables, in Sec. V, reveals that the value
the VFTH exponentg discriminates between different dy
namics regimes. One of our results is indeed that three qu
tatively different dynamic regimes arise, respectively, forg
.1, 0,g,1, andg51, the last of which is even mode
dependent. Forg.1 it is, however, possible to rephrase t
asymptotic dynamics of the model into an out of equilibriu
thermodynamics, using one extra thermodynamic param
only, the effective temperature.

The phrasing of the dynamic properties in terms of a g
eralized out of equilibrium thermodynamic framework is ca
ried out in Sec. IV, where we introduce effective paramet
to take into account the history of the system.

In Sec. V we study two-time observables, such as co
lation functions and response functions, and we look at
fluctuation-dissipation ratio out of equilibrium@20#. It coin-
cides with the effective temperature independently found
Sec. IV.
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II. MODEL

The model we study, introduced in@21#, is described by
the local Hamiltonian

H@$xi%,$Si%#5
1

2
K(

i 51

N

xi
22H(

i 51

N

xi2J(
i 51

N

xiSi2L(
i 51

N

Si ,

~2.1!

where N is the size of the system and$xi% and $Si% are
continuous variables, the last satisfying a spherical constr
( iSi

25N. We will call them from now on harmonic oscilla
tors and spherical spins, respectively.K is the Hooke elastic
constant,H is an external field acting on the harmonic osc
lators,J is the coupling constant between$xi% and$Si%, and
L is the external field acting on the spherical spins. As
will see in this paper the simple local form of Eq.~2.1!
allows us to introduce an analytically solvable dynam
with glassy behavior.

In our simple model we introduce by hand a separation
time scales where the spins represent the fast modes an
harmonic oscillators the slow ones. Separation of time sc
is one of the most important and most general characteris
that glasses are supposed to have. Indeed, we assume th
$Si% evolve with time on a much shorter time scale than t
of the harmonic oscillators. From the point of view of th
spins the$xi% are quenched random variables and the co
binationJxi can be seen as a random field exerted on spi.
On the other hand, from the point of view of the motion
the $xi% the spins are just a noise. To describe the long ti
regime of the$xi% system we can average over this noise
performing the computation of the$Si% partition function,
yielding an effective Hamiltonian depending only on th
$xi%, which will determine the dynamics of these variable

Summing out fast variables is a standard technique
physics. For instance, in any Landau-Ginzburg-Wils
theory there occur coefficients of which the temperature
pendence arises from summing out fast processes. We
do the same in our model.

We perform the spin integration in the partition functio
using the saddle point approximation for largeN and we get

ZS~$xi%!5E S )
i 51

N

dSi D exp$2bH@$xi%,$Si%#%

3dS (
i 51

N

Si
22ND

.expF2bNS K

2
m22Hm12w1

T

2
ln

w1T/2

T D G
~2.2!

with b51/T and where we introduced the short hand no
tions

m1[
1

N (
i 51

N

xi , m2[
1

N (
i 51

N

xi
2 , ~2.3!

and
8-3
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LUCA LEUZZI AND THEO M. NIEUWENHUIZEN PHYSICAL REVIEW E 64 011508
w[AJ2m212JLm11L21
T2

4
. ~2.4!

We can define the effective Hamiltonian

Heff~$xi%![2T ln ZS~$xi%!,

obtaining

Heff~$xi%!5
K

2
m2N2Hm1N2wN1

TN

2
ln

w1T/2

T
.

~2.5!

This can also be written in terms of the internal ener
U($xi%) and of the entropy of the equilibrium processes~i.e.,
the spins! Sep($xi%):

Heff~$xi%!5U~$xi%!2TSep~$xi%!, ~2.6!

U~$xi%!5NFK

2
m22Hm12w1

T

2G , ~2.7!

Sep~$xi%!5
N

2 F12 ln
w1T/2

T G , ~2.8!

and it can indeed be verified thatU is the Hamiltonian aver-
aged over the spins and thatSep is the entropy of the spins

Another fundamental ingredient for the model is the
troduction of a constraint on the phase space to avoid
existence of a single global minimum, thus implementing
large degeneracy of the allowable lowest states. The c
straint is taken on the$xi%, thus concerning the long tim
regime. It reads

m22m1
2>m0 , ~2.9!

wherem0 is a fixed, but arbitrary, strictly positive constan
The model glass now obtained has no crystalline state. T
constraint applied to the harmonic oscillator dynamics i
way to reproduce the behavior of good glass formers,
substances for which nucleation of the crystal phase is e
cially unlikely even at very slow cooling rates~e.g., network
formers B2O3 and SiO2, molecular organics such as glycer
and atactic polystyrene, and different multicomponent liq
mixtures!. These are substances for which there are nonc
talline packing modes for the particles composing them t
have intrinsically low energy. The amorphous configuratio
are thus favored. In general the crystal state still exists
lower energy, but the probability of nucleating a crystal
stead of a glass is negligible. In specific cases~binary solu-
tions! the glassy state can even be lower in energy than
crystalline one and is thermodynamically stable with resp
to any crystal configuration@22#.

As we will explain in detail in the next section, we impos
a dynamics that satisfies this constraint and couples the
erwise noninteracting$xi% in a dynamic way.

To shorten the notation for later purposes we define h
the modified ‘‘spring constant’’K̃ and ‘‘external field’’ H̃:

K̃5K2
J2

w1T/2
, H̃5H1

JL

w1T/2
. ~2.10!
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We stress thatK̃ and H̃ are actually functions of the$xi%
themselves~throughm1 andm2 which occur inw). We also
define the constant

D[HJ1KL. ~2.11!

Recalling the definitions~2.10! it is useful to note that

H̃J1K̃L5HJ1KL5D. ~2.12!

Statics

The partition function of the whole system at equilibriu
is

Z~T!5E DxDSexp@2bH~$xi%,$Si%!#dS (
i

Si
22ND

5E dm1dm2 expH 2bNFK

2
m22Hm12w

1
T

2
lnS w1T/2

T D2
T

2
@11 ln~m22m1

2!#G J . ~2.13!

The additional object that appears in the exponent is
contribution to the entropy of the$xi% configurations:

I[
N

2
@11 ln~m22m1

2!#. ~2.14!

It is the expression for the configurational entropy, whi
will be widely discussed in Sec. IV after having introduce
the dynamics. It comes from the JacobianeI of the transfor-
mation of variablesDx→dm1dm2 @see Eq.~2.3!#. We can
compute the largeN limit of this partition using once again
the saddle point approximation. The saddle point equati
are found by minimizing with respect tom1 and m2 the
function

b

N
F~T,m1 ,m2![

1

T S K

2
m22Hm12wD

1
1

2 F ln
w1T/2

T
212 ln~m22m1

2!G .
~2.15!

Denoting the saddle point values ofm1 andm2 asm̄1 andm̄2
the equations are

m̄15
H̃~m̄1 ,m̄2!

K̃~m̄1 ,m̄2!
, ~2.16!

m̄25m̄1
21

T

K̃~m̄1 ,m̄2!
. ~2.17!

The form of the solutionsm̄1(T), m̄2(T) is quite compli-
cated because each of these equations is actually a fo
order equation, but they can be explicitly computed. In ter
8-4
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of the equilibrium valuesm̄k we find the following expression for the equilibrium free energy density:

F„T,m̄1~T!,m̄2~T!…5NFK

2
m̄22Hm̄12w~m̄1 ,m̄2!G

1
TN

2
F ln

w~m̄1 ,m̄2!1T/2

T
212 ln@m̄22~m̄1!2#G ~2.18!

5U~T,m̄1 ,m̄2!2TSep~T,m̄1 ,m̄2!2TI~T,m̄1 ,m̄2!. ~2.19!

For the Hessian ofbF(T,m1 ,m2)/N we find the following expressions:

H[bS J2L2

w~w1T/2!2
1T

m21m1
2

~m22m1
2!2

J3L

2w~w1T/2!2
2T

m1

~m22m1
2!2

J3L

2w~w1T/2!2
2T

m1

~m22m1
2!2

J4

4w~w1T/2!2
1

T

2

1

~m22m1
2!2

D ~2.20!

5b
J2

2w~w1T/2!2 S 2L2 JL

JL
J2

2
D 1

1

~m22m1
2!2 S m21m1

2 2m1

2m1
1

2
D ~2.21!

5Hessian ofbHeff~m1 ,m2! 2 Hessian ofI~m1 ,m2!. ~2.22!
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The determinant of the Hessian ofbF(T,m1 ,m2)/N,
computed at equilibrium, is

det~H!5
1

2~m̄22m̄1
2!3

~11Q`D1P`!, ~2.23!

which is always positive. In the formula above we intr
duced the abbreviations

Q[
J2~HJ1KL !

K̃3w~w1T/2!2
, Q`[Q~m̄1 ,m̄2!, ~2.24!

P[
J4~m22m1

2!

2K̃w~w1T/2!2
, P`[P~m̄1 ,m̄2!, ~2.25!

which we will often use in the following. The inverse matr
turns out to be

C[H2152
m̄22m̄1

2

11Q`D1P`

3S 11P` 2m̄122
L

J
P`

2m̄122
L

J
P` 4m̄1

212~m̄22m̄1
2!14

L2

J2
P`

D .

~2.26!

The elements of this matrix are the thermodynamic avera
of the fluctuations ofm1 and m2 around their equilibrium
01150
es

values m̄1 , m̄2, times a factorN, as we can immediately

check by expandingF to the second order aroundm̄1 andm̄2
in Eq. ~2.13!. This holds for temperatures high enough th
asymptotically, the constraint~2.9! plays no role.

III. ANALYTICALLY SOLVABLE MONTE CARLO
DYNAMICS WITH GLASSY ASPECTS

We assume as the dynamics a generalization of previo
introduced parallel Monte Carlo dynamics for the harmo
oscillators. This kind of analytic Monte Carlo approach w
first introduced in@23#, and later applied in@19# to the sim-
pler, exactly solvable harmonic oscillator model~which is
just our model after settingJ5L50) and by one of us@2,3#
also for a spherical spin model~which is the present mode
after settingH5K50 and considering the$xi% as quenched
random variables!. The dynamical model thus obtained wit
a very simple Hamiltonian and a contrived dynamics has
benefit of being not only programmable on a computer,
even solvable analytically, which yields a much deeper
sight into its properties. Moreover, in the long time doma
the dynamics looks quite reasonable in regard to what
might expect of any system with a VFTH law in its static

In a Monte Carlo step a random updating of the variab
is performed (xi→xi85xi1r i /AN) where the$r i% have a
Gaussian distribution with zero mean and varianceD2. We
indicate byx ~without any subscript! the energy difference
between the new and the old states, viz.,x[H($xi8%)
2H($xi%). If the energy of the new configuration is highe
than the energy of the initial configuration (x.0) the move
8-5
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is accepted with a probabilityW(bx)[exp(2bx); if the new
energy is lower or equal (x<0) it is always accepted
@W(bx)51#.

The updating is parallel and it is this particular featu
that gives the collective behavior leading to exponentia
divergent time scales in a model with no interactions
tween particles such us ours. A sequential updating wo
not produce any glassy effect. In this sense there is an a
ogy with facilitated Ising models@24#, and with the kinetic
lattice-glass model with contrived dynamics of Kob a
Andersen@25#, where the transition probabilities depend
the neighboring configuration; this dynamics may indu
glassy behavior in situations where ordinary Glauber dyna
ics @26# would not. Models of these types may give valuab
insights into the long time dynamics, at least within a cla
that exhibits some long time universality.

In a Monte Carlo step the quantitiesNm15( ixi and
Nm25( ixi

2 are updated. Let us denote their changes byy1

and y2, respectively. Following@3# we get the distribution
function of y1 andy2, for given values ofm1 andm2:

p~y1 ,y2um1 ,m2![E )
i

dr i

A2pD2
expS 2

r i
2

2D2D
3dS (

i
xi82(

i
xi2y1D

3dS (
i

x8 i
22(

i
xi

22y2D
5

1

4pD2Am22m1
2

3expS 2
y1

2

2D2
2

~y22D222y1m1!2

8D2~m22m1
2!

D .

~3.1!

We can express the energy difference as

x5
K̃

2
y22H̃y1 , ~3.2!

upon neglecting the variations ofm1 andm2 that are of order
(yk /N)2;D2/N.

In terms of the energy differencex and ofy5y1 the dis-
tribution function can be formally written as the product
two other Gaussian distributions:

p~y1 ,y2um1 ,m2!dy1dy2

5p~xum1 ,m2!p~yux,m1 ,m2!dxdy

5
1

A2pDx

expS 2
~x2 x̄!2

2Dx
D

3
1

A2pDy

expS 2
@y2 ȳ~x!#2

2Dy
D dxdy, ~3.3!
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y
-
ld
al-

e
-

s

where

x̄5D2K̃/2, ~3.4a!

Dx5D2K̃2~m22m1
2!1D2K̃2~m12H̃/K̃ !2, ~3.4b!

ȳ~x!5
m12H̃/K̃

m22m1
21~m12H̃/K̃ !2

x2 x̄

K̃
, ~3.5a!

Dy5
D2~m22m1

2!

m22m1
21~m12H̃/K̃ !2

. ~3.5b!

The variance of the randomly chosen updating$r i% of the
slow variables was a constant in previous approac
@19,2,3,23#. That was enough to cause an Arrhenius rela
ation of the glass. To find a VFTH-like relaxation, in th
present model we letD2 depend on the distance to the co
straint, i.e., on the whole$xi% configuration before the Monte
Carlo step:

D2~ t ![8@m2~ t !2m1
2~ t !#S B

m2~ t !2m1
2~ t !2m0

D g

,

~3.6!

whereB is a constant andg is an exponent larger than zer
that we discussed already as being used in practice to m
the best VFTH-type fitting of the relaxation time in expe
ments@1,28#. In our modelg is a constant; it has no pre
scribed value since we do not make any connection wit
microscopic system. In the standard VFTH law one wou
just takeg51. One of our results will be to see that there a
three qualitatively different regimesg.1, g51, and 0,g
,1, showing that the situationg51 is actually nongeneric

We also define a quantity that we shall frequently enco
ter in the following:

G~ t ![S B

m2~ t !2m1
2~ t !2m0

D g

. ~3.7!

The nearer the system goes to the constraint~i.e., the smaller
the value ofm22m1

22m0), the larger the variance become
thus implying almost always a refusal of the proposed upd
ing. In this way, in the neighborhood of the constraint, t
dynamics is very slow and goes on through very rare
very large moves, a thing that can be interpreted as activ
dynamics. When the constraint is reachedG becomes infinite
and the system dynamics is stuck forever. The system
longer evolves toward equilibrium but is blocked in on
single ergodic component of the configuration space.
large enough temperatures, the combinationm2(t)2m1

2(t)
2m0 will remain strictly positive. The highest temperatu
T0 at which it can vanish fort→` is identified with the
Kauzmann temperatureTK ~see Sec. IV A!.

The question whether detailed balance is satisfied or no
also nontrivial in our model. Indeed, it happens to be sa
fied for this kind of dynamics only for largeN. For exact
detailed balance we should have
8-6
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p~xum1 ,m2!exp~2bx!5p~2xum1 ,m2! ~3.8!

but now, when we perform the inverse move$xi8%→$xi%, the
probability distribution also depends on the$r i% throughD2

as defined in Eq.~3.6!. Thus the right hand side of the de
tailed balance consists of p(2xum18 ,m28 ;D82)Þp
(2xum1 ,m2 ;D2). Expanding this probability distribution in
powers of 1/N, however, we get thatp(2xum18 ,m28 ;D82)
5p(2xum1 ,m2 ;D2)1O(D2/N). Terms ofO(D2/N) were
already neglected in the approximation ofx done in Eq.
~3.2!. So, inasmuch as the whole approach is valid only
N→`, detailed balance is also satisfied; it would be sligh
violated in a finiteN simulation. We work at very largeN
and, even thoughD2}G(t) grows as the system approach
equilibrium ~it even diverges at the Kauzmann temperatur!,
we perform first the thermodynamic limit computing the d
namics equation and only eventually the limitt→`. If we
did the opposite there would be a region around the Ka
mann temperature where the detailed balance is violated
the dynamics is not the one discussed here. However, th
not our aim since we are interested in the ergodicity break
that takes place in systems with a large number~Avogadro-
like! of variables.

In the harmonic oscillator model and in the spherical s
model studied in@19,2,3#, the dynamics was performe
within this approach, but at fixedD. Both cases showed
relaxation time diverging at low temperature with an Arrhe
ius law, typical ofstrong glasses. We could also study e
hanced Arrhenius law by settingm050 in the present mode
~look at@27# for the study of such a model! but here we want,
instead, to develop a model representing afragile glass with
a Kauzmann transition at a finite temperature.

The Monte Carlo equations for the dynamics ofm1 and
m2 can now be derived along the lines of@3#. They read

ṁ15E dy1dy2W~bx!y1p~y1 ,y2um1 ,m2!

5E dxW~bx!ȳ~x!p~xum1 ,m2!, ~3.9!

ṁ25E dy1dy2W~bx!y2p~y1 ,y2um1 ,m2!

5
2

K̃
E dxW~bx!@x1H̃ȳ~x!#p~xum1 ,m2!. ~3.10!

Before performing a study of the dynamics we define t
new variablesm1 andm2 depending onm1 andm2 and rep-
resenting, respectively, the deviation from the equilibriu
state and the distance from the constraint:

m1[
H̃

K̃
2m1 , ~3.11!

m2[m22m1
22m0 . ~3.12!
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r

z-
nd
is
g

n

-

Whenm250, the constraint is reached. This will happe
if the temperature is low enough (T<T0). T0 is the highest
temperature at which the constraint is finally reached by
system. AboveT0 equilibrium will be achieved without
reaching the constraint. The temperature is too high for
system to notice at all that there is a constraint on the c
figurations:

lim
t→`

m2~ t !5m̄2~T!.0. ~3.13!

At and belowT0 the system goes to configurations that b
come arbitrarily close to the constraint, and then stays th
for arbitrarily long times.

Whenm150 equilibrium is obtained and the equilibrium
values ofm1 andm2 are given by the solution of the equa
tions

H̃~m̄1 ,m̄2!

K̃~m̄1 ,m̄2!
5m̄1 , ~3.14!

m̄22m̄2
25

T

K̃~m̄1 ,m̄2!
u~T2T0!1m0u~T02T!.

~3.15!

u(T) is the Heaviside step function.
For T>T0, these are the saddle point equatio

~2.16!,~2.17!, with m̄k denoting the equilibrium value ofmk .
When T reaches the valueT05m0K̃(T0), set by the con-
straint ~2.9!, the combinationm̄22m̄2

2 becomes, fort→`,
independent of temperature: it remains equal tom0 for all
T,T0.

When all system parameters are fixed~aging setup! the
equations of motion~3.9!,~3.10! become, in terms ofm1 and
m2,

ṁ152JQE dxW~bx!xp~xum1 ,m2!

2~11QD!E dxW~bx!ȳ~x!p~xum1 ,m2!,

~3.16!

ṁ25
2

K̃
E dxW~bx!xp~xum1 ,m2!

12m1E dxW~bx!ȳ~x!p~xum1 ,m2!, ~3.17!

where we have usedD andQ defined, respectively, in Eqs
~2.11! and ~2.24!.

We also shorten the expressionK̃(m22m1
2) by the param-

eter

Te[K̃~m22m1
2!, ~3.18!

possibly depending on time throughm1(t) and m2(t). For
the moment this is just an abbreviation but in the next sec
8-7
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we will show that an alternative description of the dynam
is possible whereTe(t) turns out to be a mapping of th
history of the system into an effective thermodynamic p
rameter. This effective temperature would be the tempera
of a system at equilibrium visiting with the same frequen
the same states that the actual—out of equilibrium—sys
at temperatureT visits on a given time scale during its dy
namics.

In the time regime whereG@x2/Te
2;O(1) @i.e., m2(t)

!1#, the Gaussian distribution of thex can be approximated
by

p~xum1 ,m2!.
exp~2G!

4TeAGp
expS x

2Te
D

3S 12
x2

16Te
2G

1
x4

512Te
4G2D ~3.19!

and Eqs.~3.16! and ~3.17! become

ṁ154YFJQK̃~m01m2!r S 12
3~122r 12r 2!

G D
2m1~11QD!@G2~123r 14r 2!#G , ~3.20!

ṁ2524YF2~m01m2!r S 12
3~122r 12r 2!

G D
2m1

2@G2~123r 14r 2!#G , ~3.21!

wherer is the normalized difference between the parame
Te and the heat-bath temperatureT,

r[
Te2T

2Te2T
, ~3.22!

and

Y[
exp~2G!

ApG
~12r !. ~3.23!

Y is the leading term of the expansion of the integral rep
senting the acceptance rate of the Monte Carlo dynamic

E dxW~bx!p~xum1 ,m2!

.
exp~2G!

ApG
~12r !

3F12
1

2G
~122r 14r 2!1O~m2

2g!G .
~3.24!

The solutions to Eqs.~3.20! and~3.21! depend on the relative
sizes ofm1 and m2, and thus also ong, as well as onr,
01150
s

-
re

m

r

-

which has a different behavior aboveT0, whereTe tends toT
in the infinite time limit, and below, whereTe never equals
the heat-bath temperature~see Sec. IV A!.

The solution to Eq.~3.21! can be easily found by neglec
ing the second term, proportional tom1

2. It is expressed in the
implicit form

2p
erf@ iAG~ t !#

i
22

exp@G~ t !#

G~ t !1/g
5

8r 1m0g

p
t1const,

~3.25!

where

erf~z!5
2

Ap
E

0

z

e2t2dt. ~3.26!

To second order approximation this can be written as

m2~ t !.
1

$ ln~ t/t0!1c ln@ ln~ t/t0!#%1/g
. ~3.27!

The constantst0 and c depend on the temperature phase
will be clarified in the following.

To study the case aboveT0, we also introduce the vari
able

dm2~ t ![m2~ t !2m̄2 ~3.28!

where m̄2 is defined in Eq.~3.13!. Since in this range of
temperatureTe(t)2T;dm2(t), the first order expansion ofr
is

r .
dm2~ t !

m01m̄2~T!
S 11

P`

11Q`D D
2m1~ t !

2P`D

JK̃eq@m01m̄2~T!#~11Q`D !
, ~3.29!

whereP` andQ` were introduced, together withP andQ, in
Eqs.~2.25! and ~2.24! and, from a dynamical point of view
they are nothing other than

Q`5 lim
t→`

Q, P`5 lim
t→`

P. ~3.30!

In this case in Eq.~3.27! c is equal to 1/2 and the expressio
for t0 in terms of the parameters of the model is

t0[
Ap~11Q`D !

8g~11P`1Q`D !
. ~3.31!

Below T0 the qualitative behavior ofm2(t) ~in this case
the m̄2 part is zero! is the same, butT is never reached. This
implies that r goes to some asymptotic constantr ` .
Concerning the solution~3.27! the only difference is in the
values
8-8
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c5
21g

2g
, t0[

BAp

8m0gr `~12r `!
. ~3.32!

In Fig. 1 we show the exact solution, numerically com
puted, of Eq.~3.21! for a particular choice of the paramet
values,K5J51, H5L50.1, m055, B51, g52. We can
see that after a couple of decades the behavior is that give
Eq. ~3.27!.

The ratio of Eqs.~3.20! and ~3.21! gives the equation

dm1

dm2
5

m1~11QD!~G1223r 12r 2!2JQTer

2r ~m01m2!2m1
2~G1223r 12r 2!

.

~3.33!

With respect to the relative weights ofm1 andm2 we can
identify different regimes, where the solution has differe
behaviors.

~1! T.T0. The leading term of the solution is given b
the stationary solution. We can also neglect the term
O(m1

2G) in the denominator. Using the expansion~3.29! for
r we get

r .
1

m01m̄2

11P`1Q`D

11Q`D
dm2 ~3.34!

and

m1~ t !5
TJQ`~11P`1Q`D !

~m01m̄2!~11Q`D !2

dm2~ t !

Ḡ
1O~dm2

2!

1O~dm2
2g11!. ~3.35!

Here we have also expandedG(t) as

FIG. 1. The difference betweenm2(t) and its asymptotic value

m̄2 is plotted for heat-bath temperatureT50.41, slightly above the

Kauzmann temperatureT054.002 48. At this temperaturem̄2

50.097 63. The case is plotted withK5J51, H5L50.1, m0

55, B51, andg52. The ‘‘exact’’ curve represents the exact s
lution ~3.25!, with initial conditionG(0)51. The ‘‘approx’’ curve
is a plot of the approximated solution~3.27!. In the inset the initial
behavior is shown: clearly the approximation~3.27! is very good
already after two decades of the dynamics.
01150
in

t

f

G~ t !5Ḡ2gḠ
dm2~ t !

m̄2

~3.36!

with Ḡ[ limt→`G(t). We are most interested in what ha
pens next to the Kauzmann temperature, i.e., for very bigḠ,
at long but not extremely long times, which meansdm2(t) is
small but not vanishing. A more detailed treatment, inclu
ing an expansion inT2T0 of m̄2 appearing inP` andQ` ,
can also be done, examining carefully to what extentm̄2 can
be approximately neglected with respect todm2(t). We can
neglectm̄2 with respect todm2(t) at temperatures very clos
to the Kauzmann temperature and for times that are not
tremely long, so that we are far from thermalization and
dynamics still has aging behavior. In Fig. 2 we show t
relative weight ofm̄2 in m2(t) for a specific case. As is clea
from the figure, as soon as we go too far fromT0 we cannot
neglect inm2(t) its asymptotic valuem̄2.

~2! T,T0 , g.1. In this and in the following cases th
asymptotic value ofm2(t) is m̄250 so thatdm2(t)5m2(t).
In this dynamic regime also the adiabatic approximation c
be carried out and the second term in the denominator of
~3.33! is again negligible. In this case the leading term ofr in
its expansion in powers ofm2 , r ` , is of O(1). Therefore we
get

m1~ t !5
JT̄er `Q`

11Q`D

1

G~ t !
1O~m2

11g!, ~3.37!

where

T̄e[ lim
t→`

K̃„m1~ t !,m2~ t !…@m01m2~ t !#5K̃`m0 ,

~3.38!

FIG. 2. Ratio of m̄2 /m2(t) at different temperatures, at an
above the Kauzmann temperature. Too far away fromT0 the con-

tribution of m̄2 to m2(t) becomes relevant at shorter time decad
The case is plotted withK5J51, H5L50.1, m055, and with a
VFTH exponentg52. For this set of parameters the Kauzma
temperature turns out to beT054.002 48.
8-9
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K̃`[ lim
t→`

K̃„m1~ t !,m2~ t !…, ~3.39!

r `5
T̄e2T

2T̄e2T
. ~3.40!

~3! T,T0 , g51. In this case the adiabatic expansion
no longer consistent. We have to solve Eq.~3.33! taking
dm1 /dm2 into account. To leading order the equation tak
the form

dm1

dm2
5

m1G~11Q`D !2JQ`T̄er `

2r `m0
1O~m1!1O~m2!

1O~Gm1
2!1cO~Gm1m2!. ~3.41!

Defining the quantitye[B(11Q`D)/2r `m0 we identify
other five subregimes in the caseg51.

~a! e.1. The solution is

m1~ t !5
JQ`T̄er `

2r `m0~e21!
m2~ t !2c1

1

e21
m2

e~ t !. ~3.42!

The exponente is always positive, at least in cooling, be
causeT̄e.T, makingr ` andQ` positive.c1 is also positive
because it is the exponential of the integration constant~the
value of which depends on the initial conditions!. Sincee
.1, the second term in the right hand side can be negle
andm1;m2.

~b! e51. We find

m1~ t !52
JT̄er `Q`

11Q`D

ln m2~ t !

G~ t !
1c2m2 , ~3.43!

wherec2 is the integration constant and can take any val
In the long time dynamics the logarithmic term will tak
over and, independently of the initial conditions,m1.m2
and will be positive.

~c! 1/2,e,1. The second term in Eq.~3.42! is leading
and the solution is

m1~ t !5c1

1

12e
m2

e~ t !. ~3.44!

c1 is a positive constant andm1@m2 and positive.
~d! e51/2. Whene<1/2 the second term in the denom

nator, always neglected up to now, has to be taken into
count. In this case the leading term in the denominator g
to zero andJT̄er `Q` can be neglected with respect
m1G(11Q`D) in the numerator. We can thus easily sol
the equation

dm2

dm1
5

2r `m022m1
2G

m1G~11Q`D !
. ~3.45!

For e51/2 we get
01150
s

ed
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c-
es

m2~ t !52
2

11Q`D
m1

2~ t !ln m1~ t !1c2m1
2~ t !, ~3.46!

which is not invertible analytically. It is clear anyway that
this subregimem1@m2 . c2 can take any value.

~e! e,1/2. The solution is

m1~ t !5Am0r `~122e!

G~ t !

3F11
c1

2 S 11Q`D

2 D 1/eS 122e

e D 1/e21

m2~ t !1/2e21G
~3.47!

wherec1.0. Still m1@m2.
~4! T,T0 , g,1. Considering also the termm1

2G in the
denominator of Eq.~3.33!, the solution is now

m1~ t !5Ar `m0

G~ t ! S 12
11Q`D

2m0r `g
m2~ t !G~ t ! D . ~3.48!

In this low temperature regimem1@m2 once again.
For g51, e<1/2 and forg,1 the solution to Eq.~3.45!

involves only the absolute value ofm1, thus giving two pos-
sible choices for the sign of the functionm1(m2). In order to
guarantee continuity ofm1 at the parameter values at whic
the dynamics changes regime, we requirem1 to have the
same sign in two contiguous regimes. That means tha
Eqs.~3.46!, ~3.47!, and~3.48! we chose the plus sign.

The time dependent variablesm1(t) and m2(t) give the
dynamic behavior of every observable in the long, but n
extremely long, time regime, i.e., in the aging regime. Wh
the time increases further the dynamics will exponentia
relax to equilibrium as exp(2t/teq). We will see whatteq is
in the next section.

IV. OUT OF EQUILIBRIUM THERMODYNAMICS

The history of a system that is far from equilibrium can
expressed by a number of effective parameters, like the
fective temperature or other effective fields, in order to rec
the out of equilibrium dynamics in a thermodynamic a
proach @3#. The number of effective parameters needed
make such a translation is, in principle, equal to the num
of independent observables considered. For a certain cla
system, however, there is some effective thermalization
the effective parameters pertaining to processes having
same time scale become asymptotically equal to each o
in time. Examples of out of equilibrium regimes governed
a single effective temperature have been considered
@3,29#. In computer glasses the approach has been app
with some success@30,31#.

Given the solution of the dynamics@and thus the form of
the functionsm1(t) andm2(t)# a quasistatic approach can b
followed by computing the partition functionZe of all the
macroscopically equivalent states~those having the sam
values form1,2) at the given timet. The measure on which
this out of equilibrium partition function is evaluated is n
the Gibbs measure. In order to generalize the equilibri
8-10
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thermodynamics we assume an effective temperatureTe and
an effective fieldHe , and substitute the equilibrium measu
by exp@2Heff„$xi%,T,He…/Te#, whereHeff was introduced in
Eq. ~2.6! and the true external fieldH in it has been substi
tuted by an effective fieldHe . Te andHe are at this step of
the computation just fictitious parameters. However, as s
as we get the expression of the ‘‘thermodynamic’’ poten
Fe[2Te ln Ze as a function of macroscopic variablesm1,2
and effective parameters, we can fixTe and He as taking
those values that make the potential as small as possible
thus have to minimizeFe with respect tom1 and m2 to
determineTe andHe and evaluate the resulting analytic e
pressions atm15m1(t) andm25m2(t) given by the dynam-
ics at the considered timet. Counting all the macroscopicall
equivalent states at the timet at which the dynamical vari-
ables take valuesm1 andm2, we get

Ze~m1 ,m2 ;Te ,He!

[E DxexpF2
1

Te
Heff~$xi%,T,He!G

3dS Nm12(
i

xi D dS Nm22(
i

xi
2D . ~4.1!

From this partition function we can build an effectiv
thermodynamic potential as a function ofTe andHe , as well
as ofT andH, where the effective parameters depend on ti
through the time dependent values of them1 and m2 solu-
tions of the dynamics. They actually are a way of describ
the evolution in time of the system out of equilibrium. Th
effective free energy takes the form

Fe~ t !5U„m1~ t !,m2~ t !…2TSep„m1~ t !,m2~ t !…

2Te~ t !I„m1~ t !,m2~ t !…1@H2He~ t !#Nm1~ t !,

~4.2!

with

Te~ t !5K̃„m1~ t !,m2~ t !…@m01m2~ t !#, ~4.3!

He~ t !5H2K̃„m1~ t !,m2~ t !…m1~ t !, ~4.4!

where the last term ofFe replaces the2HNm1 occurring in
U @see Eq.~2.7!# by 2HeNm1. The quantity

I~ t !5
N

2
$11 ln@m01m2~ t !#% ~4.5!

is the configurational entropy~2.14! and the expressions fo
U andSep are given in Eqs.~2.7! and ~2.8!.

As we see from Eqs.~4.3! and ~4.4! in the dynamic re-
gimes 1 and 2, reported in Sec. III, wherem1!m2, the ef-
fective temperature alone is enough for a complete ther
dynamic description of the dominant physic phenome
(He5H), while in the regimes 3a and 3b (m1;m2) and in
3c, 3d, 3e, and 4 (m1@m2), whenm1 is no longer negligible,
the effective fieldHe is also needed.
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Effective temperature from generalized first law. Letting
M[Nm1, and using Eqs.~2.7!, ~2.8!, and~2.14!, the differ-
ential of the free energy~4.2! turns out to be

dF52SepdT2IdTe2MdHe , ~4.6!

thus implying

dU5TdSep1TedI1~He2H !dM2MdH. ~4.7!

Using this expression we are able to write down the first l
of thermodynamicsdU5d̄Q1d̄W, in the two-temperature–
two-field case, where the change in work done on the sys
is d̄W52MdH. In order for the conservation of energy t
be satisfied the heat variation has, then, to take the form

d̄Q5TdSep1TedI1~He2H !dM. ~4.8!

This is the same expression obtained in the two-tempera
picture of@29# where the fields where absent. At equilibrium
whereHe5H and Te5T, this reduces to the usual expre
sion for ideal reversible quasistatic transformationsd̄Q
5TdS, with the total entropyS5Sep1I.

From Eq. ~4.8! the complete expression for the rate
change of the heat of the system turns out to be

Q̇5Nṁ1

TK̃2~w1T/2!

2DJ
1Nṁ2

K̃

2

1Nm1

K̃

2~11QD2K̃JQm1!
~ṁ11ṁ2K̃JQ!.

~4.9!

The heat flowing out of the system is2Q̇. Referring to the
aging regimes described in Sec. III the quantityQ̇ turns out
to be proportional toṁ2 in the regimes 1 (T.T0) and 2
(T,T0 ,g.1). In the dynamic regimes 3a and 3b (T

,T0 ,g51,e>1) Q̇}ṁ11ṁ2. For regimes 3c, 3d, and 3
(T,T0 ,g51, e<1) and for regime 4 (T,T0 ,g,1) Q̇

}ṁ1.
In every dynamic regimeṁ1 andṁ2 are negative and this

implies that the heat flow of the out of equilibrium system
positive in its approach to equilibrium, as it should be,
matter the values of the parameters of the model.

Starting from the first law of thermodynamics, we ca
derive the effective temperature in yet another way, throu
a generalization of the Maxwell relationT5]U/]S valid at
equilibrium for a system of internal energyU and entropyS,
with the derivative taken at constant magnetization~or vol-
ume!. We put for simplicityHe5H in the rest of this sub-
section. Out of equilibrium, together with the previous Ma
well relation for equilibrium processes~where S has to be
substituted bySep) the following generalization also holds

Te5
]U

]I U
Sep

. ~4.10!
8-11
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A more feasible identity, where the variable to be kept co
stant during the transformation is the bath temperature, ra
than the entropy of the fast processes, can be obta
@32,33,12#. Let us introduce, with this aim, the functionF:

F[Fe1TeI, ~4.11!

inducingdF5TedI2SepdT. Through this auxiliary poten-
tial functionF we can then rewrite the effective temperatu
as

Te~ t !5
]F

]I U
T

. ~4.12!

This result is a firm prediction for systems that satisfy t
assumption of a two-temperature thermodynamics. For
derlying mechanisms in specific cases see@32,33,12#. Writ-
ing Eq.~4.12! asḞ/İ and using Eqs.~3.9! and~3.10! we get
@neglecting terms ofO(m1)#

Te~ t !5K̃„m1~ t !,m2~ t !…@m2~ t !2m1
2~ t !# ~4.13!

in agreement with Eq.~4.3!.

A. Statics

T0 is defined as the temperature at which the constrain
reached from above: some configurations become infeas
and the valleys of the free energy landscape are divided
infinite barriers. The breaking of ergodicity in a landsca
with many minima gives rise to a real thermodynamic ph
transition@11#.

When the constraint~2.9! on the phase space of the$xi% is
first reached, atT0, in the infinite time limit,I goes to its
minimal value I0[I(T0)511 ln m0. Coming from high
temperature there would thus be a transition from a m
~metastable! states phase to a phase in which the system
stuck forever in one single minimum. This transition is wh
is thought to happen in real glasses, at the so called Ka
mann temperature. Since we are using the continuous v
able $xi%, the entropyI ~as well asSep) is, in our case, ill
defined at low temperature: it would diverge like lnT at zero
temperature if no constraint were present. Our valueI(T0) is
greater than zero, because this entropy counts all the mul
ways in which the continuous harmonic oscillators can
range themselves in order to satisfy the constraint~2.9!.
Since we are dealing with classical variables we can byp
this inconvenience by just subtracting fromI the constantI0
to makeI(T5T0)50. The entropy valueI0 is related to the
dynamics on time scales where all the degenerate minima
sampled. These are much longer than the scales of our i
est, and for our purposes the constantI0 plays no role.

To see how the transition takes place we first look at
asymptotic behavior of the effective temperature. WhenT
>T0 and t→`, Te becomes the heat-bath temperatureT.
WhenT,T0, instead,Te never reaches such a temperatu
It rather goes toward some limiting valueT̄e(T) that we can
get from Eq.~4.3!, which may be rewritten for clarity in the
explicit form
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~Km02T̄e1T!~Km02T̄e!~JT̄e!
21D2m0~Km02T̄e!

2

2J4m0~ T̄e!
250, ~4.14!

a quartic equation for the effective temperature in the infin
time limit. The same equation evaluated atTe5T5T0 gives
us the value of the Kauzmann temperatureT0 as a function

of the parameter of the model. In Fig. 3 we plotT̄e versusT
for a choice of parameter values.

From Eq. ~4.14! or Fig. 3 we observe thatdTe /dTuT
0
2

,1 whereas, coming from above the Kauzmann tempe
ture, one has, of course,dTe /dTuT

0
151. The derivative of

Te(T) thus shows a discontinuity atT5T0.
Any thermodynamic function, likeU andm1, will depend

on the heat-bath temperature both explicitly and through
effective temperature. For the specific heat we will have,
instance,

C[
1

N

dU

dT U
H

5
1

N

]U

]TU
H

1
1

N

]U

]Te
U

H,T

dTe

dTU
H

. ~4.15!

This is of the same formC5c11c2(]Te /]T)p assumed
originally by Tool @34# for the study of caloric behavior in
the glass formation region.

The discontinuity indTe /dTuH causes a discontinuity in
the specific heat and also in the quantity2]m1 /]TuH , called
magnetizability in@2,3# ~it is the analog of a thermal expan
sivity for the model here described!, because both of thes
quantities contain terms proportional to]Te /]TuH . One
could now discuss the Ehrenfest relations between these
continuities, and the Prigogine-Defay ratio, as was done

FIG. 3. In the static regime the effective temperature is sho
as a function of the heat-bath temperature. At high temperature

coincide but below the Kauzmann transitionT̄e does not reachT,
not even in the infinite time limit. The system remains out of eq
librium for ever. Values of the constants areK5J51, H5L
50.1, m055.
8-12
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related models by one of us@29,2,3#. Because of the close
analogy between all these cases, we shall not go deeper
this at the present moment.

B. Dynamics

The relaxation time is the characteristic time scale
which the system initially out of equilibrium~because, for
example, of a sudden quench to low temperature! relaxes
toward equilibrium. It can be defined, for instance, from t
dynamical equations of the internal energy per harmonic
cillator u[U/N,

u̇52
u

teq
, ~4.16!

or, equivalently, from the equations of motion form1 , m2 as
the time at which the quantity of interest goes to 1/e of its
initial value. In any temperature regime it turns out that t
relaxation time has an exponential behavior inG:

teq;eG5expS B

m2
D g

. ~4.17!

Making use of the solution~3.27! we find the following be-
havior for the relaxation time versus the heat-bath temp
ture.

~1! T.T0 . m2(t)→m̄2(T) and near enough to the Kauz
mann temperature we can linearize the latter inT2T0. For
t→` we get an exponential decay with relaxation time

teq}expS A0

T2T0
D g

, ~4.18!

A05BS ]m̄2~T!

]T
U

T0

D 21

5
BK̃`~K2K̃`!~11DQ`1P`!

~K2K̃`!~11DQ`!2K̃`P`
U

T0

. ~4.19!

This behavior is a generalized Vogel-Fulcher-Tamma
Hesse law@6–8#, whereg can have any value and in particu
lar g51.

Looking at the configurational entropy, since at the fi
order expansion inm2 we haveI2I0.(N/2m0)m2, we also
find from Eq.~4.17! the Adam-Gibbs relation@9#

teq}expF NB

2m0~I2I0!G
g

. ~4.20!

Far from equilibrium, in the aging regime where the rela
ation is very slow, we can still define a time dependent ‘‘
laxation time’’ giving the characteristic time scale on whi
the a processes are taking place. Always forT very near to
T0, in the aging regime,m̄2, the static part ofm2, is negli-
gible with respect to the dynamic partdm2 so that for the
effective temperature we have the following expansion:
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Te~ t !.T01
11DQ`1P`

11Q`D
K̃`dm2~ t !1O~T2T0!.

~4.21!

We get

t~ t !}expS A~T!

Te~ t !2TD g

.expS A~T0!

Te~ t !2T0
D g

, ~4.22!

A~T![
B~11DQ`1P`!

11Q`D
K̃` , ~4.23!

where A(T0),A0, meaning that in the static regimet is
more divergent.

~1! T,T0 ,g.1. For T,T0 the relaxation time always
diverges fort→`. However, as was done in the case abo
T0 for the relaxation in the aging regime, an instantaneo
relaxation time can be considered and expressed in term
the effective temperature using the first order expansion
Te in m2:

Te~ t !5T̄e1
11DQ`1P`

11Q`D
K̃`m2~ t !. ~4.24!

We find

t~ t !5t„T,Te~ t !…}expS A~T!

Te~ t !2T̄e~T!
D g

, ~4.25!

whereA(T) is the one given in Eq.~4.23!. The aging behav-
ior just above and well belowT0 are thus intimately related
The expression~4.25! resembles a VFTH law where th
heat-bath temperature has been substituted by a time de
dent effective temperatureTe(t) and the Kauzmann tempera
ture by the asymptotic valueT̄e . Such a relation for the time
scale of the aging dynamics could hold very well in mo
general systems.

~3! T,T0 ,g<1. In these regimes, wherem1 cannot be
neglected with respect tom2, there is no simple expressio
for t.

V. TWO-TIME VARIABLES: BREAKING OF TIME-
TRANSLATION INVARIANCE AND THE FLUCTUATION-

DISSIPATION RELATION

In this section we compute the correlation and respo
functions which, unlike the energy and the quantitiesm1(t)
and m2(t), depend in a nontrivial way on two times whe
the system is out of equilibrium, thus showing directly t
loss of time-translation invariance with respect to the cas
equilibrium. The aim of computing such quantities is also
build a fluctuation-dissipation relation and look at the mea
ing of the fluctuation-dissipation ratio ~FDR!
] t8C(t,t8)/G(t,t8) far from equilibrium.

The correlation functions between the thermodynam
fluctuation of a quantityma(t) at timet and that of a quantity
mb(t8) at a different timet8 are defined as

Cab~ t,t8![N^dma~ t !dmb~ t8!&, a,b51,2, ~5.1!
8-13
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where^•••& is the average over the dynamic processes,
the harmonic oscillators.

The response of an observablema at timet to a perturba-
tion in a conjugate fieldHb at some previous timet8 takes
the form

Gab~ t,t8![
d^ma~ t !&

dHb~ t8!
, a,b51,2. ~5.2!

In our modelH15H andH252K/2.
Since we will very often make use of the derivatives w

respect tom1 and m2 of the integrals given by the Mont
Carlo dynamics introduced in Sec. III, we show them in t
Appendix explicitly computed and we shorten the notat
by defining the variablesf k and gk , k50,1,2,3, in Eqs.
~A11!–~A18!.

A. High temperature case:TÌT0

First we analyze the case above the Kauzmann temp
ture. In this case the expansion of Eqs.~A11!–~A18! in pow-
ers ofm2(t) becomes an expansion both indm2(t) and inm̄2

@or equivalently in 1/Ḡ5(m̄2 /B)g#, because we are inter
ested in studying what happens for large times and near
Kauzmann temperatureT0, i.e., for small values ofdm2(t)
and for small values ofm̄2 ~or large values ofḠ). In the f k
andgk written in the Appendix we leave the notation witho
the overbar meaning that an expansion for long times, i.e.
expansion indm2(t), or an expansion inm̄2, has still to be
done, depending on the kind of approximation that we ne
For the sake of clarity we repeat here the expansion ofG(t)
in the aging regime:

m2~ t !5m̄21dm2~ t !, G~ t !5Ḡ2gḠ
dm2~ t !

m̄2

. ~5.3!

The following exact relations hold:

]m1
m15212LQK̃, ]m2

m152
J

2
QK̃. ~5.4!

We stress that]m1
m1 and]m2

m1 are still functions ofm2,

through Q and K̃, and that they can thus be expanded
powers of dm2, leading to corrections to thef k and gk .
Since in the end they will appear only in the combinatio
]m1

m112m1]m2
m1 and]m1

m122L/J]m2
m1 we just give the

expressions of these combinations:

]m1
m112m1]m2

m152~11QD!

.2~11Q`D !2dm2Q1D, ~5.5!

]m1
m122

L

J
]m2

m1521, ~5.6!

where
01150
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Q15
Q`

~11Q`D !~m01m̄2!
FJ2~m01m̄2!~3w̄1T/2!

2w̄2~w̄1T/2!
23P`G

~5.7!

is the coefficient ofdm2(t) in the first order expansion ofQ,

Q~ t !5Q`1Q1dm2~ t !, ~5.8!

and

w̄[AJ2m̄212JLm̄11L21T2/4. ~5.9!

In the following formulas the derivatives ofm1, as well as
m1 itself, have to be considered as general, regular functi
of m2.

In addition to the expansion~5.8! of Q we also give the
expansions to first order indm2(t) of the quantitiesr @de-
fined in Eq.~3.22!#, m1 , K̃ @Eq. ~2.10!#, P @Eq. ~2.25!#, and
Q @Eq. ~2.24!#:

r ~ t !5
1

m01m̄2
S 11Q`D1P`

11Q`D D dm2~ t !, ~5.10!

K̃~ t !5K̃`1
K̃`P`

~11Q`D !~m01m̄2!
dm2~ t !, ~5.11!

m1~ t !5m̄12
P`D

K̃`J~11Q`D !~m01m̄2!
dm2~ t !,

~5.12!

P~ t !5P`1
P`

~11Q`D !~m01m̄2!

3F11Q`D2P`1
J2~m01m̄2!~3w̄1T/2!

2w̄2~w̄1T/2!
Gdm2~ t !.

~5.13!

For the terms containingGm1, from Eq.~3.35! we see that in
this dynamic regime

Gm15
JQ`T

m01m̄2

11Q`D1P`

~11Q`D !2
dm21O~dm2

2!. ~5.14!

In @3# equations of motion for simpler models were o
tained. Our present model share the basic attributes tha
needed to get those equations, namely, the possibility
writing the transition probability~3.1! of the Monte Carlo
dynamics as the product of two Gaussian probability dis
butions~3.3!, functions, respectively, of the energy variatio
x and of the variationy of the magnetizationlike quantity
( ixi .

We thus recall here the following equations holding f
the equal time correlation functions:
8-14
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d

dt
Cab~ t,t !5E W~bx!H ȳa~x!ȳb~x!1DyS 2

H1

H2
D a1b22

1 (
c51

2
]

]mc
@ ȳa~x!Ccb~ t,t !

1 ȳb~x!Cca~ t,t !#J p~xum1 ,m2!dx,

a,b51,2, ~5.15!

where@recalling Eqs.~3.2! and~3.5! and using Eqs.~3.6! and
~4.3!#

ȳ1~x!5
m1

m22m1
21m1

2

x̄2x

K̃
5S 4Gm12m1

x

Te
D1O~m1

3!,

~5.16!

ȳ2~x!5
2

K̃
@x1H̃ȳ1~x!#, ~5.17!

x̄5
D2K̃

2
54TeG, ~5.18!

Dy5
D2~m22m2!

m22m1
21m1

2
58~m01m2!G1O~Gm1

2!. ~5.19!

Expanding the integrals*W(bx) ȳa(x) ȳb(x)p(xum1 ,m2)dx
and Dy*W(bx)p(xum1 ,m2)dx up to orderY, Eqs. ~5.15!
become

Ċ11~ t,t !58@m01m2~ t !#G~ t !S 12
122r 14r 2

G~ t ! DY~ t !

12 f 1~ t !C11~ t,t !12g1~ t !C12~ t,t !, ~5.20!

Ċ12~ t,t !516m1~ t !@m01m2~ t !#G~ t !S 12
122r 14r 2

G~ t ! DY~ t !

1 f 2~ t !C11~ t,t !1@ f 1~ t !1g2~ t !#C12~ t,t !

1g1~ t !C22~ t,t !, ~5.21!

Ċ22~ t,t !532m1~ t !2@m01m2~ t !#G~ t !

3S 12
122r 14r 2

G~ t ! DY~ t !132@m01m2~ t !#2Y~ t !

12 f 2~ t !C12~ t,t !12g2~ t !C22~ t,t !. ~5.22!

The functionsf 1 , g1 , f 2, andg2 are given in the Appendix
Due to the complicated form of the equations we are not a
to find solutions valid at every time. We are obliged to fi
approximate solutions valid on given time scales. First
will study the solutions in the aging regime, for times th
are long but not longer than some given time scaletg , after
which the system begins to thermalize. Afterward we w
01150
le

e
t

l

study the dynamics of correlation and response functions
times longer thantg , when the system approaches equili
rium.

1. Dynamics in the aging regime

In the aging regime, for temperature just above the Ka
mann temperatureT0, we can neglectm̄2 with respect to
dm2(t). This means that in expressions~5.8!–~5.13! we have
to put m̄2 equal to zero everywhere, including the consta
Q` , P` , and K̃` @defined, respectively, in Eqs.~2.24!,
~2.25!, and~3.39!#, and we can writedm2(t)5m2(t).

To find the solutions to Eqs.~5.20!–~5.22! we can first
perform an adiabatic expansion neglecting the time der
tives of the correlation functions. Indeed, to first order
approximation Ċab is proportional to ṁ2: they are of
O(dm2Y), negligible with respect to the right hand sid
terms. We then compute the second order corrections.
solutions for the caseT.T0, in the aging regime with neg
ligible m̄2 and r proportional tom2(t), turn out to be

C11~ t,t !5
1

11Q`D H m01m2~ t !F12
m0Q1D

11Q`DG1OS 1

G D
1O„m2

2~ t !…J , ~5.23!

C12~ t,t !5
1

11Q`D H 2m1~ t !m01m2~ t !

3F2m1~ t !S 12
m0Q1D

11Q`D D2m0Q`DG1OS 1

G D
1O„m2

2~ t !…J , ~5.24!

C22~ t,t !5
1

11Q`D H 4m1~ t !2m01m2~ t !

3F4m1~ t !2S 12
m0Q1D

11Q`D D24m0m1Q`DG
1OS 1

G D1O„m2
2~ t !…J . ~5.25!

To get these expressions it is enough to keep inf 1 , g1, f 2 ,
and g2 @defined in Eqs.~A13!–~A16!# only terms up to
O(Y).

Once we have the equal time solutions we can solve
equations for the two-time functions. Always following th
approach of@3# we get the equations

] tCab~ t,t8!5 f a~ t !C1b~ t,t8!1ga~ t !C2b~ t,t8!, a,b51,2,
~5.26!

wheref a andga are defined in Eqs.~A13!–~A16!. We intro-
duce the function
8-15
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f̃ [ f 11
2ṁ1g1

g222m1g1
2g1

f 222m1f 1

g222m1g1

524YH ~11QD!G2F11QD2
2DQP

11QD

2
DP~11QD!

g~11P1QD!G1OS 1

G D J ~5.27!

whereṁ1 is obtained from Eq.~3.9! as

ṁ1.4m1YG24m1Y~123r 14r 2!5O~m2Y!
~5.28!

and is negligible with respect to the leading orders.
The decoupled equations forC11 andC12 are, in this no-

tation,

] tC1b~ t,t8!5 f̃ ~ t !C1b~ t,t8!, b51,2. ~5.29!
th

on
tu

01150
To the leading order the two correlation functions above
connected toC21 andC22 in the following way:

C2b~ t,t8!.2m1~ t !C1b~ t,t8!, b51,2. ~5.30!

Defining the time evolution function for the considered tim
scale sector as

h̃~t![expS 2E
0

t

f̃ ~ t !dtD , ~5.31!

the solution of Eq.~5.29! comes out to be

C1b~ t,t8!5C1b~ t8,t8!
h̃~ t8!

h̃~ t !
1O~m1Y!. ~5.32!

Following the approach of@3# we also derive the respons
function. Neglecting the terms ofO(Y2) ~calledswitch terms
in @3#! they are
G11~ t,t1!52bE dy1dy2W8~bx!y1
2p~y1 ,y2um1 ,m2!52bE dxW8~bx!@ ȳ1~x!21Dy#p~xum1 ,m2!

52bE dxW8~bx!Dyp~xum1 ,m2!1O~m2
2Y!5

4YG

K̃
2

2Y

K̃
1O~m2Y!, ~5.33!

G12~ t,t1!52bE dy1dy2W8~bx!y1y2p~y1 ,y2um1 ,m2!52b
2

K̃
E dxW8~bx!$xȳ1~x!1H̃@ ȳ1~x!21Dy#%p~xum1 ,m2!

522b
H̃

K̃
E dxW8~bx!Dyp~xum1 ,m2!1OS m2

G
Y D5

8m1

K̃
YG2

4m1Y

K̃
1O~m2Y!, ~5.34!

G22~ t,t1!52bE dy1dy2W8~bx!y2
2p~y1 ,y2um1 ,m2!

52b
4

K̃2E dxW8~bx!$x212H̃xȳ1~x!1H̃2@ ȳ1~x!21Dy#%p~xum1 ,m2!524b
1

K̃2E dxW8~bx!~x2

1H̃2Dy!p~xum1 ,m2!1OS m2

Ḡ
Y D

5
16m1

2

K̃
YG2

8m1
2Y

K̃
232Ym0

21O~m2Y!. ~5.35!
re-
The equations describing the evolution int of the response to
a perturbation att8 have the same shape as those for
correlation functions~5.26!. The solutions are then

Gab~ t,t8!5Gab~ t8,t8!
h̃~ t8!

h̃~ t !
. ~5.36!

With these results we can generalize the fluctuati
dissipation theorem defining another effective tempera
e

-
re

Te
FD by means of the ratio between the derivative with

spect to the initial time~also called the ‘‘waiting’’ time! t8 of
the correlation functionC11 and the response functionG11:

Te
FD~ t,t8![

] t8C11~ t,t8!

G11~ t,t8!
. ~5.37!

To compute it we need
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] t8C11~ t,t8!5~] t8C11~ t8,t8!!
h̃~ t8!

h̃~ t !
2 f̃ ~ t8!

h̃~ t8!

h̃~ t !
C11~ t8,t8!

.2 f̃ ~ t8!
h̃~ t8!

h̃~ t !
C11~ t8,t8!

.24Y~ t8!

3$@11Q`D1Q1Dm2~ t8!#G~ t8!

1O~1!%
1

11Q`D

3Fm01m2~ t !S 12
m0Q1D

11Q`D D G h̃~ t8!

h̃~ t !

.24Y~ t8!$@m01m2~ t8!#G~ t8!1O~1!%
h̃~ t8!

h̃~ t !
.

~5.38!

Eventually we get

Te
FD~ t,t8!.Te~ t8!F11OS 1

G~ t8!
D 1O„m2~ t8!2

…G
5Te

FD~ t8!, ~5.39!

whereTe was first introduced in Sec. III and later on derive
in Eq. ~4.3!. We recall thatG21}m2

g . As we see here the
above defined fluctuation-dissipation effective temperat
coincides, on the time scale of our interest, with the effect
temperatureTe that we got by the quasistatic approach on
if 1/G is negligible with respect tom2. This is true only ifg,
the exponent of the generalized VFTH law~4.18!, is greater
than 1. Otherwise the last correction is no longer sublead
already forg51, Te

FD→Te only in the infinite time limit,
i.e., for time scales longer than those of the considered a
regime. As already discussed in Sec. III, where we prese
the results of the dynamics of the one-time observables,
value of the exponentg discriminates between different re
gimes. Forg.1 an out of equilibrium thermodynamics ca
be built in terms of a single additional effective parame
~the effective temperatureTe). For g<1, Te alone does not
give consistent results in the generalization of the equi
rium properties to the nonequilibrium case and in order
cure this inconsistency more effective parameters are p
ably needed. This discrepancy was clear, from Sec. III,
the regimes belowT0 where already the one-time variable
had different behaviors depending on the value ofg being
greater, equal to, or less than 1. ForT.T0 there was not
such a difference at the one-time observable level. As we
saw, it shows up, instead, at the level of two-time obse
ables.

2. Approach to equilibrium

For times longer than the aging regime time scales
terms that are relevant in Eqs.~5.20!–~5.22! for the correla-
tion functions and in the expressions~5.34!–~5.36! for the
01150
e
e
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response functions are different. Whent@tg the equilibrium
value m̄2 of the variablem2 is no longer negligible with
respect to its time dependent partdm2(t) ~which eventually
goes to zero ast→`). We are in a regime wherer .0 (Te
.T). In the solution of Eqs.~5.20!–~5.22! this means that
all the terms ofO(YrG/m2)5O(dm2Y) are now subdomi-
nant with respect to those ofO(YG) and ofO(Y). To solve
Eqs.~5.20!–~5.22! we use the adiabatic expansion, as in t
previous case.

The solutions for very large time, with finite though sma
m̄2 and a vanishingr, are

C11~ t,t !5
m01m2~ t !

11QD1P
~11P!1c11,r r

5
m01m̄2

11Q`D1P`
~11P`!1c11,dm2

dm2~ t !,

~5.40!

C12~ t,t !5C21~ t,t !.
m01m2~ t !

11QD1P S 2m̃1~ t !22
L

J
PD1c12,r r

5
m01m̄2

11Q`D1P`
S 2m̄122

L

J
P`D1c12,dm2

dm2~ t !,

~5.41!

C22~ t,t !.
m01m2~ t !

11QD1P F4m1~ t !212~m01m2~ t !!14
L2

J2
PG

1c22,r r

5
m01m̄2

11Q`D1P`

3F4m̄1
212~m01m̄2!14

L2

J2
P`G1c22,dm2

dm2~ t !.

~5.42!

Here

c11,r[2
4g@m01m2~ t !#3K̃2J2Q2

m2~ t !~11DQ!~11P1DQ!2
~11P!,

~5.43!

c12,r[
4g@m01m2~ t !#3K̃JQ

m2~11DQ!~11P1DQ!2

3F ~11P!~11K̃LQ!1K̃JQS P
L

J
2m1D G ,

~5.44!

c22,r[
16g@m01m2~ t !#3K̃JQ

m2~ t !~11DQ!~11P1DQ!2 S P
L

J
2m1D

3~11K̃LQ!, ~5.45!

and
8-17
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c11,dm2
[

1

11DQ`1P`
H 11P`2~m01m̄2!

P1DQ`1Q1D~11P`!

11P`1DQ`
2

8gDQ`P`~11P`!~m01m̄2!

m̄2~11DQ`!2 J , ~5.46!

c12,dm2
[

2

11DQ`1P`
H F m̄12

L

J
P`S 11

D

LK̃`~11DQ`!
D G2

~m01m̄2!$P1@m̄11~L/J!~11DQ`!#1DQ1~m̄12L/J!%

11P`1DQ`

1
4gDP`@~11P`!~11K̃`LQ`!1K̃`JQ`~L/JP`2m̄1!#

JK̃`m̄2~11DQ`!2 J , ~5.47!

c22,dm2
[

2

11DQ`1P`
H 2~m01m̄2!12m̄1

212
L2

J2
P`2

4m̄1P`D

K̃`J~11DQ`!

2
~m01m̄2!$P1@2m̄1

212L2/J2~P`21!1m01m̄2#1DQ1~2m̄1
212L2/J2P`1m01m̄2!%

11P`1DQ`

2
8gDP`~m̄12L/JP`!~11K̃`LQ`!

JK̃`m̄2~11DQ`!2 J , ~5.48!
in

of

f
he

q

where Q1 is defined in Eq.~5.7! and P1 in the first order
coefficient ofP in its expansion indm2 @see Eq.~5.13!#.

To find the solutions to first order approximation
dm2(t) it is enough to keep in each of Eqs.~A13!–~A16!
only terms up toO(rY) andO„rY/(Gm2)…. Whether or not
the terms ofO(rY) or those ofO„rY/(Gnm2)…, with n
51,2, . . . , are themost important depends on the value
the VFTH exponentg: if g.1, O„rY/(Gm2)…!O(rY) for
large times; they are of the same order atg51; while if
1/2,g,1 O„rY/(Gm2)…@O(rY). Furthermore, ifg<1/2
terms of orderO„rY/(G2m2)… will also be more important or
as important as those ofO(Y). For yet smaller values ofg
more and more terms of the kindrY/(Gnm2) will be much
greater thanO(rY) in the aging regime.

As t→` the solutions~5.40!–~5.42! coincide with the
elements of the matrix~2.26!, the inverse of the Hessian o
the free energy of the model, i.e., they coincide with t
average squared fluctuations at equilibrium.

Once we have the equal time solutions we can solve E
~5.26! for the two-time functions.

The function f̃ is now

f̃ [ f 11
2ṁ1g1

g222m1g1
2g1

f 222m1f 1

g222m1g1

524Y~G21!
11QD1P

11P
24Y

G2

m2
rg~m01m2!

QDP

~11P!2

1OS YGr

m2
D . ~5.49!

The decoupled equations forC11(t,t8) andC12(t,t8) are al-
ways Eq.~5.29!. From them we can computeC21(t,t8) and
C22(t,t8) as follows:
01150
s.

C21~ t,t8!.2
m1~ t !2P~ t !L/J

11P
C11~ t,t8!, ~5.50!

C22~ t,t8!.
2m1~ t !212P~ t !L2/J21m01m2~ t !

m1~ t !2P~ t !L/J
C12~ t,t8!.

~5.51!

Using the time evolution functionh̃ @Eq. ~5.31!# for the
time scale sector considered, the solution of Eq.~5.29!
comes out to be

C1b~ t,t8!5C1b~ t8,t8!
h̃~ t8!

h̃~ t !
1O~m1Y!, b51,2.

~5.52!

In the leading terms of our expansion indm2(t) and m̄2 the
expressions for thef ’s and g’s are given, for the caseT
.T0, by Eqs.~A13!–~A16!.

Using Eqs.~5.40!, ~5.41!, and~5.49!, we get

C11~ t,t8!.
11P`

11Q`D1P`
@m01m̄21O„dm2~ t !…#

3expH 24E
t8

t

Y~ t9!@G~ t9!21#

3
11Q~ t9!D1P~ t9!

11P~ t9!
dt9J , ~5.53!
8-18
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C12~ t,t8!.
2P`L/J2m̄1

11Q`D1P`
@m01m̄21O„dm2~ t !…#

3expH 24E
t8

t

Y~ t9!@G~ t9!21#

3
11Q~ t9!D1P~ t9!

11P~ t9!
dt9J . ~5.54!

B. Low temperature case:TËT0

Our approach also allows us to study the regime be
the Kauzmann temperatureT0. In this last case, though, w
have qualitatively different behaviors depending on the va
of g, i.e., on the relative weights ofm1 andm2. We describe
here the caseg.1, wherem1!m2 @see Eq.~3.35!#. For g
.1, according to the results shown in Sec. IV, it is inde
not necessary to introduce any effective thermodynamic
rameter other than the effective temperature, and the ana
can be carried out in a way similar to that of the previo
case~Sec. V A!. In expanding the time dependent coef
cients ofCab in the equations of motion@ f 1,2 andg1,2 given
in Eqs.~A13!–~A16!# we have now to take into account th
r never vanishes, while on the contrary the asymptotic va
of m2(t), denoted bym̄2, is zero. The leading terms inf k and
gk (k50,1,2,3) are in this case those ofO(YG/m2). The
subleading terms are those of orderGY andGm2Y ~coming
always withr as a multiplicative factor!. All these terms are
diverging terms, in the limitt→`, and hence terms ofO(1)
are now negligible with respect to them. They lead to c
rections to the FDR of order 1/G!m2.

The equations of motions for the equal time correlat
functions are identical to Eqs.~5.20!–~5.22!. What change
are the time dependent coefficientsf 1,2 and g1,2 and r 5r `

1O„dm2(t)…, wherer ` is defined in Eq.~3.40!.
Solutions to these equations are obtained, as before, in

adiabatic approximation and expanding all the functions
powers ofm2(t),

Cab~ t !5@2m1~ t !#a1b22

3H 1

11Q`D Fm01m2~ t !S 12
m0Q1D

11Q`D D G
2

m0

G F a1r 1a2r 2

~11Q`D !4
1grda,2db,2a3G J 1O„m2

2~ t !…,

~5.55!

whereQ1 is the coefficient of the first order expansion ofQ

given in Eq. ~5.8!, with m̄250 in this case andw̄→w`

[AJ2m01(D/K̃`)21T2/4,

Q1[
Q`

~11Q`D !m0
F J2m0~3w`1T/2!

2w`
2 ~w`1T/2!

23P`G ,

~5.56!
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a1[113DQ~122P!1~DQ!2~324P!1~DQ!3,

~5.57!

a2[4~11DQ!@K̃LQ~11P!2DQ~12P!#, ~5.58!

a3[
Jm1

K̃
Q~11DQ2m0!~11K̃LQ!~5212r 112r 2!.

~5.59!

In the asymptotic limit these solutions do not coinci
with Eqs. ~5.40!–~5.42!. That means that they are als
different from the static limit of the correlation function
found in Sec. II from the inverse of the Hessian mat
~2.26!. This is due to the fact that the static limit doe
not take into account the constraint~2.9! on the configuration
space. Above the Kauzmann temperature the dynam
never reaches this constraint so that, even if it is slow
down by the existence of the constraint, it arrives t
same static results. But as soon as we perform the dyna
at T0 or below it, the asymptotic regime will never coincid
with the equilibrium one. The system will be stuck forev
in one ergodic component of the phase space, artifici
created by imposing the constraint in the dynamics
the model, but not in the Hamiltonian. The implementati
of the constraint in the dynamics makes the varianceD2

of the distribution of the random variables giving th
updating of Monte Carlo dynamics@see Eq.~3.6!# diverging,
whenT<T0. The divergent factor ofD2 is the quantityG(t)
@Eq. ~3.7!#, appearing in the equations of motion so far d
cussed. Going from a regime where the contributions
O(1) are relevant (T.T0) to another where they are no
even subleading, with respect toO(G), we lose the static
limit.

We find the solutions of Eqs.~5.26! for the two-time cor-
relation functions by following exactly the approach show
in the preceding section, with the following expressions
the functionsṁ1 and f̃ :

ṁ154Gm1Y1O~m2
gY!, ~5.60!

f̃ 524YG~11QD!28Y
QDP

11QD
~123r 12r 2!1O~m2Y!,

~5.61!

The two-time correlation functions turn out to be

C1b~ t,t8!.
@2m1~ t8!#b21

11Q`D

3Fm01m2~ t8!S 12
m0Q1D

11Q`D D1O„m1~ t8!…G
3H 4E

t8

t

@11Q~ t9!D#Y~ t9!G~ t9!dt9J ,

b51,2, ~5.62!
8-19
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C2b~ t,t8!.2@m1~ t !#b21C1b~ t,t8!, b51,2. ~5.63!

For the response functions, from Eqs.~5.34!–~5.36! we
get

G11~ t,t1!.
4YG

K̃
2

2Y~122r !2

K̃
1

8Y~Gm1!2

Te
,

~5.64!

G12~ t,t1!.
8m1YG

K̃
2

4m1Y~122r !2

K̃
1

16m1Y~Gm1!2

Te

1
16rGm1Y

K̃
, ~5.65!

G22~ t,t1!.
16m1

2YG

K̃
2

8m1
2Y~122r !2

K̃
1

32m1
2Y~Gm1!2

Te

1
64m1rGm1Y

K̃
1

8m0~122r !2Y

K̃
, ~5.66!

where this time the contributionsGm1 and (Gm1)2 are both
of orderY and we take them into account.

The two-time behavior of the response functions is as
Eq. ~5.36! with f̃ given by Eq.~5.61!.

The last thing that we need, before computingTe
FD , is the

derivative

] t8C11~ t,t8!5
h̃~ t8!

h̃~ t !
] t8C11~ t8,t8!2 f̃ ~ t8!

h̃~ t8!

h̃~ t !
C11~ t,t8!

.4Y~ t8!
1

11Q`D Fm01m2~ t8!S 12
m0Q1D

11Q`D D G
3@11Q~ t8!D#G~ t8!

3expH 4E
t8

t

@11Q~ t !D#Y ~ t9!G~ t9!dt9J .

~5.67!

It follows that

Te
FD~ t,t8!.Te~ t8!F11OS 1

G D1O~m2
11g!G5Te

FD~ t8!.

~5.68!

In this caseO(1/G)5O(m1) is always smaller thanO(m2),
becauseg.1: in the long time regimeTe

FD(t) coincides
with Te(t).

C. Effective temperature from the fluctuation formula

A self-consistent picture with an effective temperatu
should also imply that the same effective temperature a
governs other physical variables. From the expression
m1(t;T) as a function ofH we can compute the quantit
x ( f l )[(]m1 /]H)uT,t that is the contribution to susceptibilit
01150
n

o
of

in a cooling-heating setup caused by a change in the fielH
at fixed time~also called thefluctuation susceptibility!. In a
cooling experiment the whole susceptibility can, indeed,
written as@3#

xab[
]ma

]Hb
U

T

5
]ma

]Hb
U

T,Te

1
]ma

]Te
U

T,Hb

]Te

]Hb
U

T

~5.69!

5
]ma

]Hb
U

T,t

2
]ma

]Te
U

T,Hb

]Te

]Hb
U

T,t

1
]ma

]Te
U

T,Hb

]Te

]Hb
U

T

~5.70!

[xab
f luct~ t !1xab

loss~ t !1xab
con f~ t !. ~5.71!

Here we are considering an aging situation, so only
first term is relevant. We can reasonably assume
xab

f luct(t) can take the form

xab
f luct~ t !5

]ma

]Hb
U

T,t

5N
^dma~ t !dmb~ t !& f ast

T

1N
^dma~ t !dmb~ t !&slow

Te
( f l )~ t !

,

~5.72!

where ^•••& f ast/slow is the average, respectively, over fa
and slow processes. The fast ones are governed by the
bath temperature, and the slow ones by some effective t
perature Te

( f l ) depending on the time scalet. Through
xab

f luct(t) one can look at the connection between the fluct
tion effective temperatureTe

( f l ) , introduced in@2#, and the
other effective temperatures so far defined. To work it out
start from

x11
f luct~ t ![

]m1

]H U
T,t

5N
^dm1~ t !dm1~ t !&

Te
( f l )

5
C11~ t,t !

Te
( f l )

.

~5.73!

Using the following expression form1, obtained from Eq.
~3.14!:

m1~ t;T,H !52
L

J
1

D

JK̃„m1~ t;T,H !,m2~ t;T,H !;T…
,

~5.74!

the fluctuation susceptibilityx11
( f l ) turns out to be

]m1

]H U
T,t

5
1

K̃~11QD!
1O~m1!. ~5.75!

Here we are neglecting terms like]m1 /]H and]m2 /]H, of
order m1 or higher~we deal with the regimes@T.T0 ,;g#
and @T,T0 ,g.1# wherem1!m2). Taking the expressions
~5.23! and ~5.55! we see that in both dynamic regimes th
we are considering the leading term ofC11 can be written as
8-20
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C11~ t,t !5
m01m2

11QD
1O~m2

g!, ~5.76!

and this leads to

Te
( f l )5K̃~m01m2!1O~m2

g!, ~5.77!

thus coinciding with Eq.~4.3! to the order of our interest
i.e., O(m2). At higher orders there will be nonuniversalitie
If g<1 the terms ofO(m2

g) become dominant with respec
to O(m2), leading to the same situation that we had forTe

FD

in Eq. ~5.39!, namely, the thermodynamic description do
not lead to a unique effective parameter.

VI. CONCLUSIONS

In this paper we consider a model that has all the ba
properties of a fragile glass, built by processes evolving
two well separated time scales, representing thea and b
processes taking place in real glassy materials. Also,
model is provided with a constraint applied to the harmo
oscillator dynamics, i.e., to the slow process dynamics
order to reproduce the behavior of a good glass former.

Introducing a facilitated Monte Carlo dynamics@19,23,3#
and developing it analytically, thus having the opportunity
probing it in more detail than in a numerical study, we fou
equations of motion that are in all respects those typica
glass relaxation. By means of the constrained dynamics
identified the Kauzmann temperatureT0 as the one at which
the constraint is reached, asymptotically, for the first time
a cooling experiment from high temperature. There
showed how the real thermodynamic phase transition@11#,
taking place due to the breaking of ergodicity in the lan
scape of our model, rich in degenerate minima, is charac
ized. A detailed study of the dynamics was performed b
above and below the Kauzmann temperature and for a
trary values of the exponentg generalizing the typical VFTH
behavior, usually assumed for glasses, toteq5exp@A/(T
2T0)#

g. The dynamics in the aging regime of both one-tim
and two-time variables was carefully analyzed, including
corrections to this regime, relevant at shorter times.

The decoupling of time scales is fundamental for a g
eralization of equilibrium thermodynamics to systems
from equilibrium. We tested on our exactly solvable mod
whether or not the generalized approach holds, involving
extra variable, namely, the effective temperature, in the
scription of the nonequilibrium thermodynamics. By ‘‘effe
tive temperature’’ we mean a thermodynamic quantity t
would be the temperature of a system at equilibrium visit
with the same frequency the same states that the real—o
equilibrium—system at temperatureT visits on a given time
scale during its dynamics. This kind of parameter appear
the thermodynamic functions together with the heat-b
temperature and the fields coupled to the system’s obs
ables and is coupled to the configurational entropy. In
work it was derived as a function of time~for given values of
the heat-bath temperature and of all the other paramete
the model! such that the evolving system out of equilibriu
can be characterized by a probability measure of the confi
01150
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rations having a Boltzmann-Gibbs form with a factor 1/Te
instead of 1/T in front of the Hamiltonian.

Generally speaking, in order to recast the out of equil
rium dynamics into a thermodynamic frame, the history o
system that is far from equilibrium can be expressed by m
than one effective parameter. This happens when more
one time scale is involved in the dynamic evolution of
system. In those cases to every time sector will corresp
an effective temperature@35#. Moreover, in a given time sec
tor, the number of effective parameters needed to make s
a translation into a thermodynamic viewpoint can, in pr
ciple, be equal to the number of relevant observables con
ered in every time sector. For certain dynamic regimes, h
ever, determined by the temperature and by the VF
exponentg, the effective parameters pertaining to proces
having the same time scale become equal to each othe
time, for large times.

As we saw in Sec. IV, in the dynamic regimes reported
Sec. III, when the distancem1(t) from equilibrium is much
smaller than the distance from the constraint,m2(t), the ef-
fective temperature alone is enough for a complete ther
dynamic description of the dominant physical phenome
~the effective fieldHe5H), while in the regimes where
m1(t) is no longer negligible with respect tom2(t) the effec-
tive field He(t) is also needed to map the dynamics on lo
time scales into a thermodynamic frame. From the time
havior of the slowly varying observables in the aging regim
we found in Sec. IV a VFTH relaxation time dependence
temperature above the Kauzmann transition and we der
the Adam-Gibbs relation between the relaxation time and
configurational entropy, which we can explicitly compute f
our model.

We have also been able to study the dynamics of
system quenched to a temperature below the Kauzmann
perature. At long, finite timet we see that it is possible to
introduce an instantaneous relaxation time depending on
heat-bath temperature in a nontrivial way but expressible
terms of the effective temperature. What we got in this w
is actually a VFTH law where the heat-bath temperature
been substituted by a time dependent effective tempera
Te(t) and its asymptotic valueT̄e takes the place of the
Kauzmann temperatureT0. Such a relation for the time scal
of the aging dynamics belowT0 could hold very well in
more general systems.

At equilibrium the heat-bath temperature enters many
lations that can be rigorously proved and connected to e
other in the framework of thermodynamics. Out of equili
rium we miss first principles to start with in the generaliz
tion of such a construction. We do not have any guaranty,
instance, that a given definition of effective temperatu
made by generalizing a given equilibrium formula, w
match any other definition coming from the generalization
another equilibrium formula. At equilibrium the heat-ba
temperature enters the Boltzmann-Gibbs measure, the
of thermodynamics, the fluctuation-dissipation theorem, a
different Maxwell relations. However, out of equilibrium w
have to check whether a single definition of effective te
perature is compatible with any other. Since all effecti
temperatures have definite limits for long times, in our mo
8-21
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we verify that these limits are identical~which happens al-
ways! and that the leading approaches to these limits co
cide ~which happens only forg.1). When that works out
we find a way to completely recast the long time domain
the out of equilibrium dynamics into the language of therm
dynamics in a given time sector, of course, well separa
from the other time sectors of the glassy dynamics. T
behavior may occur if the aging is so slow that the syst
has time enough to clearly demonstrate an effective temp
ture before going to a lower value of it.

With this aim we also rederived the effective temperat
from the fluctuation-dissipation ratio and from the fluctuati
formula connecting the susceptibility with the fluctuations
the slow variables of the system. In Sec. V we showed
the effective temperatureTe

FD defined as the fluctuation
dissipation ratio tends to the effective temperatureTe that we
obtained by the quasistatic approach in Sec. IV only ifm2

g is
negligible with respect tom2. This is true ifg is greater than
1. Otherwise the corrections of orderm2

g are no longer sub-
leading and significantly change the time evolution ofTe

FD .
Already for g51, Te

FD→Te only in the infinite time limit,
i.e., for time scales longer than those of the aging reg
considered. Even above the Kauzmann temperature the v
of the exponentg discriminates between different regime
For g.1 an out of equilibrium thermodynamics can be bu
in terms of the single additional effective parameterTe . For
g<1, Te alone does not give consistent results in the gen
alization of the equilibrium properties to the nonequilibriu
case. In those cases one also needs an effective fieldHe .
However, no universal behavior for theTe , He combination
has been found. Even within the solvable model of this
per, the applicability of the thermodynamic picture depen
on how fast the relaxation time diverges.

We already mentioned that in the caseg.1, for tempera-
tures above the Kauzmann temperature, both the statics
the dynamics in the aging regime can be described by Vo
Fulcher-Tammann-Hesse laws; see Eqs.~4.20! and ~4.22!.
Notice that these laws are not identical, the static one dive
ing more strongly, due to a larger prefactor of the diverg
term in the exponent. We also notice that in this situat
g.1 the aging~well! below the Kauzmann temperature c
be described in a form very similar to the aging above it. F
this reason it is meaningful to compare experiments in th
two aging regimes, and, in particular, to test whether
decay of measurable quantities, like the energy or the m
netization, has a common temporal law in the full aging
gime.

Finally we checked the consistency of the widely me
tioned thermodynamic picture by writing the first and seco
laws using the effective temperature, and we verified tha
can also be computed from the generalization of the Maxw
relation at equilibrium giving the heat-bath temperature
the derivative of internal energy with respect to the entro
@see Eq.~4.12!#. We found the same results we got from t
other derivations in the same validity limits.
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APPENDIX: MONTE CARLO INTEGRALS

Here we present the expressions of the integrals that
use in computing the dynamics of the observables follow
the Monte Carlo method explained in Sec. III. We recall th
x, defined in Eq.~3.2!, is the energy difference between th
current configuration of the system and the one proposed
the updating. The variabler @defined in Eq.~3.22!# is the
distance of the effective temperatureTe from the heat-bath
temperature~which is also the equilibrium value ofTe in the
dynamic regime above the Kauzmann temperature!. First we
define the abbreviation

Y[
e2G~12r !

ApG
, ~A1!

which is the leading term of the acceptance ratio of
Monte Carlo dynamics given by

E dxW~bx!p~xum1 ,m2!5YF12
122r 14r 2

G

1
3

4G2
~124r 116r 2224r 3

116r 4!1OS 1

G3D G . ~A2!

Then we give the behavior of the derivative with respect
time of the energy

E dxW~bx!xp~xum1 ,m2!

524rTeYF12
3~122r 12r 2!

G
1

15

4G2
~3212r 128r 2

232r 3116r 4!1OS 1

G2D G ~A3!

and of the variablem1 @defined in Eq.~2.3!#

E dxW~bx!ȳ1~x!p~xum1 ,m2!

54m1YFG2~123r 14r 2!1OS 1

G D G . ~A4!

In Sec. V we compute the correlation and the response fu
tions. In order to find their time dependence we need
following derivatives. In these formulas we show the deriv
tives with respect tom1 andm2, taken as independent var
ables, of the effective temperatureTe , the variabler, and the
leading term of the Monte Carlo acceptance ratioY. They
are

]Te

]m1
52K̃S P

L

J
2m1D , ~A5!
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]Te

]m2
5K̃~P11!, ~A6!

]r

]m1
52

123r 12r 2

m01m2
S P

L

J
2m1D , ~A7!

]r

]m2
5

123r 12r 2

m01m2
~P11!, ~A8!

and

]Y

]m1
52YFm1g

m2
~2G11!12

122r

m01m2
S P

L

J
2m1D G ,

~A9!

]Y

]m2
5YF g

2m2
~2G11!2

122r

m01m2
~P11!G . ~A10!

Furthermore, we show the extensive computation of
coefficients of Eqs.~5.20!–~5.22! and ~5.26! for the dynam-
ics of the two-time observables:

f 0[]m1
E dxW~bx!p~xum1 ,m2!

.2m1g
Y

m2
F2G2114r 28r 21

3

2G
~13256r

1136r 22160r 3180r 4!G1OS Y

m2G2D
22

Y

m01m2
S P

L

J
2m1D F122r 1

3220r 140r 2232r 3

G G
1OS Y

G2D , ~A11!

g0[]m2
E dxW~bx!p~xum1 ,m2!

.g
Y

2m2
F2G2114r 28r 21

3

2G
~13256r 1136r 2

2160r 3180r 4!G1OS Y

m2G2D 2Y
1

m01m2
~P11!

3F122r 1
3220r 140r 2232r 3

G G1OS Y

G2D , ~A12!

f 1[]m1
E dxW~bx!ȳ1~x!p~xum1 ,m2!

.24m1gY
Gm1

m2
@2G2316r 28r 2#1OS Ym1

m2
D

216Y
Gm1

m01m2
S L

J
P2m1D

14Y]m1
m1~G2113r 24r 2!1O~m1Y!, ~A13!
01150
e

g1[]m2
E dxW~bx!ȳ1~x!p~xum1 ,m2!

.2gY
Gm1

m2
@2G2316r 28r 2#1OS Ym1

m2
D

28Y
Gm1

m01m2
~P11!14Y]m2

m1~G2113r 24r 2!

1O~m1Y!, ~A14!

f 2[]m1
E dxW~bx!ȳ2~x!p~xum1 ,m2!

.2m1f 11
2

K̃
f 3116Yr

L

J

P

11QD
1O~m1Y!,

~A15!

g2[]m2
E dxW~bx!ȳ2~x!p~xum1 ,m2!

.2m1g11
2

K̃
g318Yr

P

11QD
1O~m1Y!, ~A16!

f 3[]m2
E dxW~bx!xp~xum1 ,m2!

.4m1gYTe

r

m2
F2G25112r 212r 22

3

G
~319r 254r 2

1140r 32160r 4180r 5!G1OS Yr

m2G2D
28YK̃S L

J
P2m1D F123r 14r 2

2
3

G
~125r 112r 2214r 318r 4!G1OS Y

G2D , ~A17!

g3[]m2
E dxW~bx!xp~xum1 ,m2!

.22gYTe

r

m2
F2G25112r 212r 2

2
3

G
~319r 254r 21140r 32160r 4180r 5!G

1OS Yr

m2G2D 24YK̃~P11!

3F123r 12r 22
3

G
~125r 112r 2214r 318r 4!G

1OS Y

G2D . ~A18!
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All partial derivatives with respect tom1 have been com-
puted keepingm2 fixed and vice versa. At this stage time h
not yet been introduced. Introducing it, we are able to m
an expansion of Eqs.~A11!–~A18! in powers ofm2(t). In
, i

n

tte

01150
e

the formulas we already performed such an expans
breaking it atO„Y/(Gm2)…, which is more than sufficiently
refined to derive the dynamics of the correlation and
sponse functions in all the regimes of our interest.
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